APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (4): 468-474    DOI: 10.1007/s11770-012-0350-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
利用解析信号的水平与垂直导数进行磁异常的解释
马国庆,杜晓娟,李丽丽,孟令顺
吉林大学地球探测科学与技术学院,长春130021
Interpretation of magnetic anomalies by horizontal and vertical derivatives of the analytic signal
Ma Guo-Qing1, Du Xiao-Juan1, Li Li-Li1, and Meng Ling-Shun1
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130021, China.
 全文: PDF (1057 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 磁性体受磁化方向的影响往往使异常形态发生畸变,因此不可以直接利用原始异常来估算场源体的深度和类型。二维情况下磁异常的解析信号具有不受磁化方向干扰的特性,本文提出一种基于解析信号水平与垂直导数的自动磁异常解释方法。首先利用解析信号的性质推导出一线性方程,该方程在无任何先验信息的情况下就可以计算出磁性体的位置参数,然后利用获得的位置参数计算场源的构造指数。通过模型产生的磁异常试验本文方法的可行性,结果证明本文方法能成功地计算出不同类型场源体的位置和构造指数,且受噪声干扰较小。最后将本文方法应用于解释实测磁异常,获得了未开采铁矿的分布情况,且与已知矿体的分布形态相一致。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
马国庆
杜晓娟
李丽丽
孟令顺
关键词磁异常   解析信号   导数     
Abstract: Magnetic anomalies are often disturbed by the magnetization direction, so we can’t directly use the original magnetic anomaly to estimate the exact location and geometry of the source. The 2D analytic signal is insensitive to magnetization direction. In this paper, we present an automatic method based on the analytic signal horizontal and vertical derivatives to interpret the magnetic anomaly. We derive a linear equation using the analytic signal properties and we obtain the 2D magnetic body location parameters without giving a priori information. Then we compute the source structural index (expressing the geometry) by the estimated location parameters. The proposed method is demonstrated on synthetic magnetic anomalies with noise. For different models, the proposed technique can both successfully estimate the location parameters and the structural index of the sources and is insensitive to noise. Lastly, we apply it to real magnetic anomalies from China and obtain the distribution of unexploited iron ore. The inversion results are consistent with the parameters of known ore bodies.
Key wordsMagnetic anomaly   analytic signal   derivative   
收稿日期: 2011-10-31;
基金资助:

本研究由中国地质调查局地质矿产调查评价专项项目(GZH003-07-03)资助。

引用本文:   
马国庆,杜晓娟,李丽丽等. 利用解析信号的水平与垂直导数进行磁异常的解释[J]. 应用地球物理, 2012, 9(4): 468-474.
MA Guo-Qing,DU Xiao-Juan,LI Li-Li et al. Interpretation of magnetic anomalies by horizontal and vertical derivatives of the analytic signal[J]. APPLIED GEOPHYSICS, 2012, 9(4): 468-474.
 
[1] Bastani, M., and Pedersen, L. B., 2001, Automatic interpretation of magnetic dike parameters using the analytic signal technique: Geophysics, 66, 551 - 561.
[2] Doo, W. D., Hsu, S. K., and Yeh, Y. C., 2007, A derivative-based interpretation approach to estimating source parameters of simple 2D magnetic sources from Euler deconvolution, the analytic-signal method and analytical expressions of the anomalies: Geophysical Prospecting, 55, 255 - 264.
[3] Hsu, S. K., Coppens, D., and Shyu, C. T., 1998, Depth to magnetic source using the generalized analytic signal: Geophysics, 63, 1947 - 1957.
[4] Huang, D., Gubbins, D., Clark, R. A., and Whaler, K. A., 1995, Combined study of Euler’s homogeneity equation for gravity and magnetic field.57th EAGE conference, Glasgow, UK, Extended Abstracts, 144.
[5] Li, X., 2006, Understanding 3D analytic signal amplitude: Geophysics, 71, L13 - L16.
[6] Li, X., 2008, Magnetic reduction-to-the-pole at low latitudes: observation and considerations: The leading edge, 990 - 1002.
[7] Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation: Geophysics, 37, 507 - 517.
[8] Rao, D., Babu, H., and Narayan, P., 1981, Interpretation of magnetic anomalies due to dikes: The complex gradient method: Geophysics, 46, 1572 - 1578.
[9] Reid, A. B., Allsop, J. M., Granser, H., Millet, A. J., and Somerton, I. W., 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55, 80 - 91.
[10] Roest, W. R., Verhoef, J., and Pilkington, M., 1992, Magnetic interpretation using 3-D analytic signal. Geophysics, 57, 116 - 125.
[11] Salem, A., Ravat, D., Gamey, T. J., and Ushijima, K., 2002, Analytic signal approach and its applicability in environmental magnetic investigations: Journal of Applied Geophysics, 49, 231 - 244.
[12] Salem, A., and Ravat, D., 2003, A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data: Geophysics, 68(6), 1952 - 1961.
[13] Salem, A., Ravat, D., Mushayandebvu, M. F., and Ushijima, K., 2004, Linearized least-squares method for interpretation of potential-field data from sources of simple geometry: Geophysics, 69, 783 - 788.
[14] Salem, A., 2005, Interpretation of magnetic data using analytic signal derivatives: Geophysical Prospecting, 53, 75 - 82.
[15] Thompson, D. T., 1982, EULDPH’-a new technique for making computer-assisted depth estimates from magnetic data: Geophysics, 47, 31 - 37.
[1] 马国庆,明彦伯,韩江涛,李丽丽,孟庆发. 磁源体参数反演的快速局部波数法[J]. 应用地球物理, 2018, 15(2): 353-360.
[2] 朱小三,卢民杰. 基于航磁资料揭示智利北部区域成矿构造[J]. 应用地球物理, 2016, 13(4): 721-735.
[3] 熊盛青,佟晶,丁燕云,李占奎. 中国陆域航磁与地质构造研究综述[J]. 应用地球物理, 2016, 13(2): 227-237.
[4] 冯彦, 蒋勇, 姜乙, 李正, 蒋瑾, 刘中微, 叶美晨, 王弘晟, 李秀明. 基于三维Taylor多项式和曲面Spline模型的区域磁异常场研究[J]. 应用地球物理, 2016, 13(1): 59-68.
[5] 郭灿灿, 熊盛青, 薛典军, 王林飞. 基于垂向一阶导数与解析信号比值的欧拉反演方法[J]. 应用地球物理, 2014, 11(3): 331-339.
[6] 李淑玲, 李耀国, 孟小红. 南海东北部陆缘三维磁性结构研究[J]. 应用地球物理, 2012, 9(3): 237-246.
[7] 孙鹏飞, 吴燕冈, 杨春成, 韩兆红, 范美宁. 重力梯度法的角点位置最优化选取研究[J]. 应用地球物理, 2011, 8(4): 269-276.
[8] 王万银, 张功成, 梁建设. 位场垂向导数零值位置空间变化规律研究[J]. 应用地球物理, 2010, 7(3): 197-209.
[9] 孙建国. Kirchhoff型反偏移场稳相分析[J]. 应用地球物理, 2010, 7(1): 18-30.
[10] 孙建国. Kirchhoff型反偏移场稳相分析[J]. 应用地球物理, 2010, 6(1): 18-30.
[11] 王万银, 潘玉, 邱之云. 位场数据归一化总水平导数垂向导数边缘识别方法[J]. 应用地球物理, 2009, 6(3): 226-233.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司