APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (4): 459-467    DOI: 10.1007/s11770-012-0358-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
地层构造约束的稳定最小平方成像条件研究
刘国昌1, 2,陈小宏1, 2,宋建勇3,芮振华4
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学(北京)CNPC物探重点实验室 北京 102249
3. 中国石油勘探开发研究院石油物探技术研究所,北京 10083
4. Indpendent Project Analysis, Inc., VA, USA, 20147
A stabilized least-squares imaging condition with structure constraints
Liu Guo-Chang1,2, Chen Xiao-Hong1,2, Song Jian-Yong3, and Rui Zhen-Hua4
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Lab of Geophysical Exploration, China University of Petroleum, Beijing 102249, China.
3. Research Department of Geophysics, Research Institute of Petroleum Exploration and Development, Beijing 10083, China.
4. Independent Project Analysis, Inc., VA 20147, USA.
 全文: PDF (1515 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统的炮集偏移采用Claerbout提出的互相关型成像条件(Clarebout, 1971),然而互相关型成像条件不能保持反射振幅。反褶积型成像条件可以改善成像振幅和照明补偿,但存在不稳定问题。最小平方成像条件计算所有炮集上、下行波场的互相关,求和后再与下行波场的照明总能量相除,因此比传统的成像条件稳定,然而在照明很弱且照明不均衡的区域,其成像效果不理想。针对成像条件稳定性和照明均衡问题,在最小平方成像条件的基础上,本文提出了一种地层构造约束的稳定最小平方成像条件。在反问题正则化理论框架下,采用平面波重建算子约束的偏移成像结果沿构造同相轴方向光滑,提高了成像条件计算的稳定行,均衡了成像振幅。水平层状模型和Sigsbee2A模型的算例均表明了本方法的有效性,与阻尼最小平方成像条件相比,构造约束的稳定最小平方成像条件提高了偏移成像的稳定性和成像振幅的均衡性,成像结果同相轴更加连续,改善了照明不足和照明不均衡,压制了假象和噪声,有利于深层构造的保幅成像。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘国昌
陈小宏
宋建勇
芮振华
关键词成像条件   最小平方   平面波分重建算子   同相轴局部斜率     
Abstract: Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging amplitude and compensate for illumination. However, the deconvolution imaging condition introduces instability issues. The least-squares imaging condition first computes the sum of the cross-correlation of the forward and backward wavefields over all frequencies and sources, and then divides the result by the total energy of the forward wavefield. Therefore, the least-squares imaging condition is more stable than the classic imaging condition. However, the least-squares imaging condition cannot provide accurate results in areas where the illumination is very poor and unbalanced. To stabilize the least-squares imaging condition and balance the imaging amplitude, we propose a novel imaging condition with structure constraints that is based on the least-squares imaging condition. Our novel imaging condition uses a plane wave construction that constrains the imaging result to be smooth along geological structure boundaries in the inversion frame. The proposed imaging condition improves the stability of the imaging condition and balances the imaging amplitude. The proposed condition is applied to two examples, the horizontal layered model and the Sigsbee 2A model. These tests show that, in comparison to the damped least-squares imaging condition, the stabilized least-squares imaging condition with structure constraints improves illumination stability and balance, makes events more consecutive, adjusts the amplitude of the depth layers where the illumination is poor and unbalanced, suppresses imaging artifacts, and is conducive to amplitude preserving imaging of deep layers.
Key wordsImaging condition   least squares   plane wave construction operator   local event slopes   
收稿日期: 2011-12-29;
基金资助:

本研究由国家科技重大专项课题(课题编号:2011ZX05023-005-005)资助。

引用本文:   
刘国昌,陈小宏,宋建勇等. 地层构造约束的稳定最小平方成像条件研究[J]. 应用地球物理, 2012, 9(4): 459-467.
LIU Guo-Chang,CHEN Xiao-Hong,SONG Jian-Yong et al. A stabilized least-squares imaging condition with structure constraints[J]. APPLIED GEOPHYSICS, 2012, 9(4): 459-467.
 
[1] Plessix, R. E., and Mulder, W. A., 2004, Frequency- domain finite-difference amplitude-preserving migration: Geophysical Journal International, 157, 975 - 987.
[2] Claerbout, J. F., 1971, Toward a unified theory of reflector mapping: Geophysics, 36, 467 - 481.
[3] Sava, P., 2007, Stereographic imaging condition for wave-equation migration: Geophysics, 72, A87 - A91.
[4] Liu, Y., Wang, D., Liu C., and Feng, X., 2011, Weighted median filter based on local correlation and its application to poststack random noise attenuation: Chinese Journal of Geophysics, 54, 358 - 367.
[5] Claerbout, J. F., 2005, Basic Earth Imaging, Stanford Exploration Project, available at http://sepwww. stanford.edu/sep/prof/bei1005.pdf.
[6] Lines, L. R., and Treitel, S., 1984, A review of least- squares inversion and its application to geophysical problems: Geophysical Prospecting, 32, 159 - 86.
[7] Schleicher, J., Costa, J. C., and Novais, A., 2008, A comparison of imaging condition for wave-equation shot-profile migration. Geophysics, 73, 219 - 227.
[8] Claerbout, J. F., 2008, Image estimation by example: Geophysical Soundings Image Construction: Stanford Exploration Project, available at http://sepwww. stanford.edu/sep.
[9] Paffenholz, J. 2001. Sigsbee 2 synthetic subsalt dataset: image quality as function of migration algorithm and velocity model error. 71st SEG meeting, San Antonio, Texas, USA, W-5.
[10] Shin, C., Jang, S., and Min, D. J., 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory: Geophysical Prospecting, 49, 592 - 606.
[11] Du, J., Wang, S., Liu, G. and Liu, Y., 2009, VSP wavefield separation using local slopes attribute: Chinese Journal of Geophysics, 52, 1867 - 1872.
[12] Plessix, R. E., and Mulder, W. A., 2004, Frequency- domain finite-difference amplitude-preserving migration: Geophysical Journal International, 157, 975 - 987.
[13] Fomel, S., 2002, Applications of plane-wave destruction filters. Geophysics, 67, 1946 - 1960.
[14] Trad, D., Ulrych, T., and Sacchi, M., 2003, Latest views of the sparse Radon transform: Geophysics, 68, 386 - 399.
[15] Sava, P., 2007, Stereographic imaging condition for wave-equation migration: Geophysics, 72, A87 - A91.
[16] Fomel, S., and Claerbout, J. F., 2003, Multidimensional recursive filter preconditioning in geophysical estimation problems: Geophysics, 68, 577 - 588.
[17] Valenciano, A., and Biondi, B., 2003, 2D deconvolution imaging condition for shot profile migration: 73rd Annual International Meeting, SEG, Expanded Abstracts, 1059 - 1062.
[18] Fomel, S., and Guitton, A., 2006, Regularizing seismic inverse problems by model reparameterization using plane-wave construction: Geophysics, 71, A43 - A47.
[19] Vivas, F., Pestana, R., and Ursin, B., 2009, A new stabilized least-squares imaging condition: Journal of Geophysics and Engineering, 6, 264 - 268.
[20] Schleicher, J., Costa, J. C., and Novais, A., 2008, A comparison of imaging condition for wave-equation shot-profile migration. Geophysics, 73, 219 - 227.
[21] Guitton, A., Valenciano, A., Bevc, D., and Claerbout, J., 2007, Smoothing imaging condition for shot-profile migration: Geophysics, 72, S149 - S154.
[22] Harlan, W. S., 1995, Regularization by model reparameterization. http://billharlan.com/pub/papers/ regularization.pdf.
[23] Kaelin, B., and Guitton, A., 2006, Imaging condition for reverse time migration: 76nd Annual International Meeting, SEG, Expanded Abstracts, 2594 - 2598.
[24] Ye, Y. M., Li, Z. C., Tong, Z. Q., Yang, J. L., and Zhu, X. F., 2009, Amplitude-preserved prestack depth migration based on stable imaging condition: Oil Geophysical Prospecting (in Chinese), 44(1), 28 - 32.
[25] Shin, C., Jang, S., and Min, D. J., 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory: Geophysical Prospecting, 49, 592 - 606.
[26] Li, Z. C., and Yang, J. L., 2008, Application of smoothing operator in seismic prestack depth imaging: Journal of China University of Petroleum, 32(6), 47 - 50.
[27] Trad, D., Ulrych, T., and Sacchi, M., 2003, Latest views of the sparse Radon transform: Geophysics, 68, 386 - 399.
[28] Zhang, Y., Zhang, G., and Bleistein, N., 2003, Theory of true-amplitude one-way wave equations and true amplitude common-shot migration: Geophysics, 70, E1 - E10.
[29] Liu, G. C., Fomel, S., Chen, X., 2011, Stacking angle- domain common-image gathers for normalization of illumination: Geophysical Prospecting, 59, 244 - 255.
[30] Valenciano, A., and Biondi, B., 2003, 2D deconvolution imaging condition for shot profile migration: 73rd Annual International Meeting, SEG, Expanded Abstracts, 1059 - 1062.
[31] Vivas, F., Pestana, R., and Ursin, B., 2009, A new stabilized least-squares imaging condition: Journal of Geophysics and Engineering, 6, 264 - 268.
[32] Liu, Y., Fomel, S., and Liu, G., 2010, Nonlinear structure- enhancing filtering using plane-wave construction: Geophysical Prospecting, 58, 415 - 427.
[33] Liu, Y., Wang, D., Liu C., and Feng, X., 2011, Weighted median filter based on local correlation and its application to poststack random noise attenuation: Chinese Journal of Geophysics, 54, 358 - 367.
[34] Lines, L. R., and Treitel, S., 1984, A review of least- squares inversion and its application to geophysical problems: Geophysical Prospecting, 32, 159 - 86.
[35] Ye, Y. M., Li, Z. C., Tong, Z. Q., Yang, J. L., and Zhu, X. F., 2009, Amplitude-preserved prestack depth migration based on stable imaging condition: Oil Geophysical Prospecting (in Chinese), 44(1), 28 - 32.
[36] Paffenholz, J. 2001. Sigsbee 2 synthetic subsalt dataset: image quality as function of migration algorithm and velocity model error. 71st SEG meeting, San Antonio, Texas, USA, W-5.
[37] Zhang, Y., Zhang, G., and Bleistein, N., 2003, Theory of true-amplitude one-way wave equations and true amplitude common-shot migration: Geophysics, 70, E1 - E10.
[38] Plessix, R. E., and Mulder, W. A., 2004, Frequency- domain finite-difference amplitude-preserving migration: Geophysical Journal International, 157, 975 - 987.
[39] Sava, P., 2007, Stereographic imaging condition for wave-equation migration: Geophysics, 72, A87 - A91.
[40] Schleicher, J., Costa, J. C., and Novais, A., 2008, A comparison of imaging condition for wave-equation shot-profile migration. Geophysics, 73, 219 - 227.
[41] Shin, C., Jang, S., and Min, D. J., 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory: Geophysical Prospecting, 49, 592 - 606.
[42] Trad, D., Ulrych, T., and Sacchi, M., 2003, Latest views of the sparse Radon transform: Geophysics, 68, 386 - 399.
[43] Valenciano, A., and Biondi, B., 2003, 2D deconvolution imaging condition for shot profile migration: 73rd Annual International Meeting, SEG, Expanded Abstracts, 1059 - 1062.
[44] Vivas, F., Pestana, R., and Ursin, B., 2009, A new stabilized least-squares imaging condition: Journal of Geophysics and Engineering, 6, 264 - 268.
[45] Ye, Y. M., Li, Z. C., Tong, Z. Q., Yang, J. L., and Zhu, X. F., 2009, Amplitude-preserved prestack depth migration based on stable imaging condition: Oil Geophysical Prospecting (in Chinese), 44(1), 28 - 32.
[46] Zhang, Y., Zhang, G., and Bleistein, N., 2003, Theory of true-amplitude one-way wave equations and true amplitude common-shot migration: Geophysics, 70, E1 - E10.
[1] 周艳辉, 高静怀, 王保利, 何洋洋. 基于局域化相空间的VSP成像[J]. 应用地球物理, 2010, 6(1): 31-40.
[2] 周艳辉, 高静怀, 王保利, 何洋洋. 基于局域化相空间的VSP成像[J]. 应用地球物理, 2010, 7(1): 31-40.
[3] 叶月明, 李振春, 徐秀刚, 朱绪峰, 仝兆岐. 基于单程波方程的角度域保幅偏移[J]. 应用地球物理, 2009, 6(1): 50-58.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司