APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2012, Vol. 9 Issue (3): 333-340    DOI: 10.1007/s11770-012-0346-0
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Signal-purity-spectrum-based colored deconvolution
Li Guo-Fa1,2, Peng Geng-Xin3, Yue Ying4, Wang Wan-Li1,2, and Cui Yong-Fu3
1. State Key Laboratory of Petroleum Resource and Prospecting (China University of Petroleum (Beijing)), Beijing 102249, China.
2. Key Laboratory of Geophysical Exploration of China National Petroleum Corporation, China University of Petroleum, Beijing 102249, China.
3. Tarim Oil Field, PetroChina, Korla 841000 China.
4. Dagang Oil Field, PetroChina, Tianjin 300280 China.
 Download: PDF (1572 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Signal to noise ratio (SNR) and resolution are two important but contradictory characteristics used to evaluate the quality of seismic data. For relatively preserving SNR while enhancing resolution, the signal purity spectrum is introduced, estimated, an used to defi ne the desired output amplitude spectrum after deconvolution. Since a real refl ectivity series is blue rather than white, the effects of white reflectivity hypothesis on wavelets are experimentally analyzed and color compensation is applied after spectrum whitening. Experiments on real seismic data indicate that the cascade of the two processing stages can improve the ability of seismic data to delineate the geological details.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LI Guo-Fa
PENG Geng-Xin
YUE Ying
WANG Wan-Li
CUI Yong-Fu
Key wordssignal purity spectrum   SNR spectrum   resolution   spectrum whit dening   color compensation     
Received: 2012-05-17;
Fund:

This research was fi nancially supported by the National Natural Science Foundation of China (Grant No. 41174117) and PetroChina Innovation Foundation (Grant No. 2010D-5006-0301).

Cite this article:   
LI Guo-Fa,PENG Geng-Xin,YUE Ying et al. Signal-purity-spectrum-based colored deconvolution[J]. APPLIED GEOPHYSICS, 2012, 9(3): 333-340.
 
[1] Canales L. L., 1984, Random noise reduction: 54th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 525 - 527.
[2] Kallweit, R. S., and Wood, L. C., 1982, The limit of resolution of zero-phase wavelets: Geophysics, 47(7), 1035 - 1046.
[3] Li, G. F., Mou, Y. G., and Wang, P., 2005, A interactive technique for seismic wavelet extraction: Journal of the University of Petroleum (in Chinese), 29(5), 33 - 36.
[4] Li, G. F., Xiong, J. L., et al., 2008, Seismic reflection characteristics of fluvial sand and shale interbedded layers: Applied Geophysics, 5(3), 219 - 229.
[5] Li, G. F., Cao, M. Q., et al., 2010a, Modeling of the signature of air gun in marine seismic exploration considering the effects of multiple practical physics: Applied Geophysics, 7(2), 158 - 165.
[6] Li, G. F., Cao, M. Q., and Zhou, H., 2010b, Effects of near-surface absorption on the reflection characteristics of continental interbedded strata: the Dagang Oilfield as an example: ACTA GEOLOGICA SINICA, 84(5), 1306 - 1314.
[7] Li, Q. Z., 1986, The evaluation of filtering and deconvolution effects by S/N spectrum analysis—A study of S/N ratio and resolution in frequency domain: Oil Geophysical Prospecting(in Chinese), 21(6), 575 - 601.
[8] Li, Q. Z., 2008, Relationship between resolution of seismic exploration and spectrum of S/N ratio: Oil Geophysical Prospecting(in Chinese), 43(2), 244 - 245.
[9] Porsani, M. J., and Ursin, B., 2000, Mixed-phase deconvolution and wavlet estimation: The Leading Edge, 19, 76 - 79.
[10] Puryear, C. I., and Castagna, J. P., 2008, Layer-thickness determination and stratigraphic interpretation using spectral inversion: Theory and application: Geophysics, 73(2), R37 - R38.
[11] Rosa, A. L. R., and Ulrycht, T. J., 1991, Processing via spectral modeling: Geophysics, 56(8), 1244 - 1251.
[12] Soubaras, R., 1994, Signal-preserving random noise attenuation by the f-x projection: 64th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1576 - 1579.
[13] Velis, D. R., 2008, Stochastic sparse-spike deconvolution: Geophysics, 73(1), R1 - R9.
[14] Walden, A. T., and Hosken, J. W. J., 1985, An investigation of the spectral properties of primary reflection coefficients: Geophysical Prospecting, 33, 400 - 435.
[15] Widess, M. B., 1982, Quantifying resolving power of seismic system: Geophysics, 47(8), 1160 - 1173.
[16] Zhao, B., and Yu, S. P., 1996, Spectral-modeled deconvolution and its application: Oil Geophysical Prospecting (in Chinese), 31(1), 101 - 113.
[1] Wang De-Ying, Kong Xue, Dong Lie-Qian, Chen Li-Hua, Wang Yong-Jun, and Wang Xiao-Chen. A predictive deconvolution method for non-white-noise reflectivity*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 109-123.
[2] Wu Shao-Jiang, Wang Yi-Bo, Ma Yue, Chang Xu. Super-resolution least-squares prestack Kirchhoff depth migration using the L0-norm[J]. APPLIED GEOPHYSICS, 2018, 15(1): 69-77.
[3] Ji Zhan-Huai, Yan Sheng-Gang. Properties of an improved Gabor wavelet transform and its applications to seismic signal processing and interpretation[J]. APPLIED GEOPHYSICS, 2017, 14(4): 529-542.
[4] Wang De-Ying, Huang Jian-Ping, Kong Xue, Li Zhen-Chun, Wang Jiao. Improving the resolution of seismic traces based on the secondary time–frequency spectrum[J]. APPLIED GEOPHYSICS, 2017, 14(2): 236-246.
[5] Zhang Hua, He Zhen-Hua, Li Ya-Lin, Li Rui, He Guamg-Ming, Li Zhong. Research and application of spectral inversion technique in frequency domain to improve resolution of converted PS-wave[J]. APPLIED GEOPHYSICS, 2017, 14(2): 247-257.
[6] Tian Yu, Xu Hong, Zhang Xing-Yang, Wang Hong-Jun, Guo Tong-Cui, Zhang Liang-Jie, Gong Xing-Lin. Multi-resolution graph-based clustering analysis for lithofacies identification from well log data: Case study of intraplatform bank gas fields, Amu Darya Basin[J]. APPLIED GEOPHYSICS, 2016, 13(4): 598-607.
[7] Chen Bo, Jia Xiao-Feng, Xie Xiao-Bi. Broadband seismic illumination and resolution analyses based on staining algorithm[J]. APPLIED GEOPHYSICS, 2016, 13(3): 480-490.
[8] Che Xiao-Hua, Qiao Wen-Xiao, Ju Xiao-Dong, and Wang Rui-Jia. Azimuthal cement evaluation with an acoustic phased-arc array transmitter: numerical simulations and field tests[J]. APPLIED GEOPHYSICS, 2016, 13(1): 194-202.
[9] Song Jian-Guo, Gong Yun-Liang, Li Shan. High-resolution frequency-domain Radon transform and variable-depth streamer data deghosting[J]. APPLIED GEOPHYSICS, 2015, 12(4): 564-572.
[10] WANG Xiong-Wen, WANG Hua-Zhong. Application of sparse time-frequency decomposition to seismic data[J]. APPLIED GEOPHYSICS, 2014, 11(4): 447-458.
[11] ZHOU Huai-Lai, WANG Jun, WANG Ming-Chun, SHEN Ming-Cheng, ZHANG Xin-Kun, LIANG Ping. Amplitude spectrum compensation and phase spectrum correction of seismic data based on the generalized S transform[J]. APPLIED GEOPHYSICS, 2014, 11(4): 468-478.
[12] LI Zhi-Na, LI Zhen-Chun, WANG Peng, XU Qiang. Multiple attenuation using λ–f domain high-resolution Radon transform[J]. APPLIED GEOPHYSICS, 2013, 10(4): 433-441.
[13] LI Guo-Fa, QIN De-Hai, PENG Geng-Xin, YUE Ying, DI Tong-Li. Experimental analysis and application of sparsity constrained deconvolution[J]. APPLIED GEOPHYSICS, 2013, 10(2): 191-200.
[14] SHEN Hong-Lei, TIAN Gang, SHI Zhan-Jie. Partial frequency band match filtering based on high-sensitivity data: method and applications[J]. APPLIED GEOPHYSICS, 2013, 10(1): 15-24.
[15] LI Zi-Shun. Principle and application of high density spatial sampling in seismic migration[J]. APPLIED GEOPHYSICS, 2012, 9(3): 286-292.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn