APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2011, Vol. 8 Issue (3): 155-162    DOI: 10.1007/s11770-011-0290-4
article Current Issue | Next Issue | Archive | Adv Search  |  Next Articles  
Calculations of rock matrix modulus based on a linear regression relation
He Xi-Lei1, He Zhen-Hua1, Wang Rui-Liang2, Wang Xu-Ben1, and Jiang Lian1
1. State key laboratory of oil and gas reservoir geology and exploitation, Chengdu University of Technology, Chengdu 610059, China.
2. CNOOC Shenzhen Inc. Shenzhen 518067, China.
 Download: PDF (220 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we fi rst derive a simplifi ed Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fl uid is much greater than the rock matrix, and, second, we use the Eshelby-Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coeffi cients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
HE Xi-Lei
HE Zhen-Hua
WANG Rui-Liang
WANG Xu-Ben
JIANG Lian
Key wordsBulk modulus  rock matrix    fluid substitution    rock physics    linear regression     
Received: 2010-12-30;
Fund:

This work was supported by the National Nature Science Foundation of China (Grant Noss 40739907 and 40774064) and National Science and Technology Major Project (Grant No. 2008ZX05025-003).

Cite this article:   
HE Xi-Lei,HE Zhen-Hua,WANG Rui-Liang et al. Calculations of rock matrix modulus based on a linear regression relation[J]. APPLIED GEOPHYSICS, 2011, 8(3): 155-162.
 
[1] Avseth, P., Mukerji, T., and Mavko, G., 2005, Quantitative seismic interpretation - Applying rock physics tools to reduce interpretation risk: Cambridge University Press. 15 - 24.
[2] 曹均, 贺振华, 黄德济, 李琼, 2003, 裂缝储层地震波特征响应的物理模型实验研究: 勘探地球物理进展, 26(2), 88 - 93.
[3] 陈颙, 黄庭芳, 2001, 岩石物理学: 北京大学出版社, 北京.
[4] 陈颙, 黄庭芳, 刘恩儒, 2009, 岩石物理学: 中国科学技术大学出版社, 合肥.
[5] Eshelby, J. D., 1957, The determination of the elastic field of an ellipsoidal inclusion and related problems: Proc. Roy. London, A241, 376 - 396.
[6] Gurevich, B., and Galvin, J., 2007, Fluid substitution, dispersion, and attenuation in fractured and porous reservoirs - insights from new rock physics models: The Leading Edge, 26(9), 1162 - 1168.
[7] 贺振华, 李亚林, 曹钧, 李琼, 2003, 地层温压条件下超声波测试技术: 勘探地球物理进展, 26(2), 84 - 87.
[8] Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic): The Log Analyst, 31, 355 - 369.
[9] 刘雯林, 2004, 油气田开发地震技术: 石油工业出版社, 北京.
[10] Mavko, G., Mukerji, T., and Dvorkin, J., 2003, The rock physics handbook - Tools for seismic in porous media: Cambridge University Press, UK.
[11] Nur, A., 1992, Critical porosity and the seismic velocities in rocks: EOS, Transactions American Geophysical Union, 73, 43-66.
[12] Pride, S. R, Gangi, A. F., and Morgan, F. D, 1992, Deriving the equations of motion for porous isotropic media: Journal of the Acoustical Society of America, 92, 3278 - 3290.
[13] Russell, B. H., and Hedlin, K., 2003, Fluid-property discrimination with AVO: a Biot-Gassman perspective: Geophysics, 68(1), 29 - 39.
[14] Walsh, J. B., 1965, The effect of cracks on the compressibility of rock: JGR, 20(2), 381 - 384.
[15] 张佳佳, 李宏兵, 刘怀山, 崔兴福, 2009, 岩石物理建模中几种常见的骨架模型的精度分析: 中国地球物理, 中国科学技术大学出版社, 合肥, 221-222.
[1] Ma Ru-Peng, Ba Jing, Carcione José Maria, Zhou Xin, and Li Fan. Dispersion and attenuation of compressional waves in tight oil reservoirs: Experiments and simulations*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 36-49.
[2] Ma Xiao-Yi, Wang Shang-Xu, Zhao Jian-Guo, Yin Han-Jun, and Zhao Li-Ming. Velocity dispersion and fluid substitution in sandstone under partially saturated conditions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 188-196.
[3] Qian Ke-Ran, He Zhi-Liang, Chen Ye-Quan, Liu Xi-Wu, Li Xiang-Yang. Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale[J]. APPLIED GEOPHYSICS, 2017, 14(4): 463-480.
[4] Yang Zhi-Qiang, He Tao, Zou Chang-Chun. Shales in the Qiongzhusi and Wufeng–Longmaxi Formations: a rock-physics model and analysis of the effective pore aspect ratio[J]. APPLIED GEOPHYSICS, 2017, 14(3): 325-336.
[5] Liu Xi-Wu, Guo Zhi-Qi, Liu Cai, Liu Yu-Wei. Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin, China[J]. APPLIED GEOPHYSICS, 2017, 14(1): 21-30.
[6] Liu Jie, Liu Jiang-Ping, Cheng Fei, Wang Jing, Liu Xiao-Xiao. Rock-physics models of hydrate-bearing sediments in permafrost, Qilian Mountains, China[J]. APPLIED GEOPHYSICS, 2017, 14(1): 31-39.
[7] Fu Bo-Ye, Fu Li-Yun, Wei Wei, Zhang Yan. Boundary-reflected waves and ultrasonic coda waves in rock physics experiments[J]. APPLIED GEOPHYSICS, 2016, 13(4): 667-682.
[8] Guo Zhi-Qi, Liu Cai, Liu Xi-Wu, Dong Ning, and Liu Yu-Wei. Research on anisotropy of shale oil reservoir based on rock physics model[J]. APPLIED GEOPHYSICS, 2016, 13(2): 382-392.
[9] Li Sheng-Jie, Shao Yu, Chen Xu-Qiang. Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs[J]. APPLIED GEOPHYSICS, 2016, 13(1): 166-178.
[10] Pan Jian-Guo, Wang Hong-Bin, Li Chuang, Zhao Jian-Guo. Effect of pore structure on seismic rock-physics characteristics of dense carbonates[J]. APPLIED GEOPHYSICS, 2015, 12(1): 1-10.
[11] Huang Xin-Rui, Huang Jian-Ping, Li Zhen-Chun, Yang Qin-Yong, Sun Qi-Xing, Cui Wei. Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs[J]. APPLIED GEOPHYSICS, 2015, 12(1): 11-22.
[12] YIN Xing-Yao, SUN Rui-Ying, WANG Bao-Li, ZHANG Guang-Zhi. Simultaneous inversion of petrophysical parameters based on geostatistical a priori information[J]. APPLIED GEOPHYSICS, 2014, 11(3): 311-320.
[13] YU Hao, BA Jing, Carcione Jose, LI Jin-Song, TANG Gang, ZHANG Xing-Yang, HE Xin-Zhen, 欧Yang-Hua . Rock physics modeling of heterogeneous carbonate reservoirs: porosity estimation and hydrocarbon detection[J]. APPLIED GEOPHYSICS, 2014, 11(1): 9-22.
[14] LI Jing-Ye, CHEN Xiao-Hong. A rock-physical modeling method for carbonate reservoirs at seismic scale[J]. APPLIED GEOPHYSICS, 2013, 10(1): 1-13.
[15] HE Xi-Lei, HE Zhen-Hua, WANG Xu-Ben, XIONG Xiao-Jun, JIANG Lian. Rock skeleton models and seismic porosity inversion[J]. APPLIED GEOPHYSICS, 2012, 9(3): 349-358.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn