APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2012, Vol. 9 Issue (3): 247-260    DOI: 10.1007/s11770-012-0335-3
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Full gravity gradient tensors from vertical gravity by cosine transform
Jiang Fu-Yu1, Huang Yan2, and Yan Ke2
1. Hohai University, School of Earth Sciences and Engineering, Nanjing 210098, China.
2. Geology Exploration Technology Institute of Jiangsu Province, Nanjing 210048, China.
 Download: PDF (3421 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infi nite horizontal cylinder and 3D “Y” type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better refl ect the fault distribution.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
JIANG Fu-Yu
HUANG Yan
YAN Ke
Key wordsgravity anomaly   gravity gradient tensor   Fourier transform   cosine transform     
Received: 2012-06-22;
Fund:

This work is supported by the Scientifi c Research Starting Foundation of HoHai University, China (2084/40801136) and the Fundamental Research Funds for the Central Universities (No.2009B12514).

Cite this article:   
JIANG Fu-Yu,HUANG Yan,YAN Ke. Full gravity gradient tensors from vertical gravity by cosine transform[J]. APPLIED GEOPHYSICS, 2012, 9(3): 247-260.
 
[1] Ahmed, N., Natarjan, T., and Rao, K. R. 1974, Discrete cosine transform: IEEE Trans Compute, 23(1), 90 - 93.
[2] Bell, R., Anderson, R., and Pratson, L., 1997, Gravity gradiometry resurfaces: The Leading Edge, 16(1), 55 - 60.
[3] Bell, R., 1998. Gravity gradiometry: Scientific American, 278(6), 74 - 79.
[4] Blakely, R. J., and Simpson, R. W., 1986, Approximating edges of source bodies from magnetic or gravity anomalies: Geophysics, 51(7), 1494 - 1498.
[5] Cooper, G. R. J., and Cowan, D. R., 2003, The meter reader—Sunshading geophysical data using fractional order horizontal gradients: The Leading Edge, 22(3), 204 - 205.
[6] Cordell, L., and Grauch, V. J. S., 1982, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico: 52th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 246 - 247.
[7] ———, 1985, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico: in Hinze, W. J., Ed., Utility of Regional Gravity and Magnetic Maps, Soc. Expl. Geophys., 181 - 197.
[8] Cvetkovic, Z., and Popovic, M. V., 1992, New fast algorithms for the computation discrete cosine and sine transform: IEEE Trans. Signal Process., 40(8), 2083 - 2086.
[9] Eaton, D., and Vasudevan, K., 2004, Skeletonization of aeromagnetic data: Geophysics, 69(2), 478 - 488.
[10] Fedi, M., and Florio, G., 2001, Detection of potential fields source boundaries by enhanced horizontal derivative method: Geophysical Prospecting, 49(1), 40 - 58.
[11] FitzGerald, D., Reid, A., and McInerney, P., 2004, New discrimination techniques for Euler deconvolution: Computers & Geosciences, 30(5), 461 - 469.
[12] Gunn, P. J., 1975, Linear transformations of gravity and magnetic fields: Geophysical Prospecting, 23(2), 300 - 312.
[13] Gupta, V. K., and Ramani, N., 1982, Optimum second vertical derivatives in geologic mapping and mineral exploration: Geophysics, 47(12), 1706 - 1715.
[14] Hansen, R. O., and Suciu, L., 2002, Multiple-source Euler deconvolution: Geophysics, 67(2), 525 - 535.
[15] Hu, G. S., 2003, Digital signal processing: Tsinghua University Press, Beijing.
[16] Jain, A. K., 1976, A fast Karhunen-Loeve transform for a class of stochastic processes: IEEE Trans. Commun., 24(9), 1023 - 1029.
[17] Jekeli, C., 1988. The gravity gradiometer survey system (GGSS): EOS Transactions of the American Geophysical Union, 69(8), 116 - 117.
[18] Li, Y., and Oldenburg, D. W., 1998, 3D inversion of gravity data: Geophysics, 63(1), 109 - 119.
[19] Luo, X. K., and Guo, S. Y., 1991, Applied geophysics course: Geological Publishing House, Beijing.
[20] Mickus, K. L. and Hinojosa, J. H., 2001, The complete gravity gradient tensor derived from the vertical component of gravity: A Fourier transform technique: Journal of Applied Geophysics, 46(3), 159 - 174.
[21] Montana, C. J., Mickus, K. L., and Peeples, W. J., 1992, Program to calculate the gravitational field and gravity gradient tensor resulting from a system of right rectangular prisms: Computers & Geosciences, 18(5), 587 - 602.
[22] Mu, S. M., Shen, N. H., and Sun, Y. S., 1990, Method of regional geophysical data processing and application: Changchun, Jilin Science and Technology Press.
[23] Nabighian, M. N., and Hansen, R. O., 2001, Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform: Geophysics, 66(6), 1805 - 1810.
[24] Pawlowski, B., 1998, Gravity gradiometry in resource exploration: The Leading Edge, 17, 51 - 52.
[25] Pearson, W. C., 2001, Aeromagnetic imaging of fractures in a basin centered gas play: AAPG Explorer, 22(1), 52 - 55.
[26] Ravat, D., Wang, B., Wildermuth, E., and Taylor, P. T., 2002, Gradients in the interpretation of satellite-altitude magnetic data: An example from central Africa: Journal of Geodynamics, 33(1-2), 131 - 142.
[27] Vasco, D. W., 1989, Resolution and variance operators of gravity and gravity gradiometry: Geophysics, 54(7), 889 - 899.
[28] Wang, W. Y., Pan, Y., and Qiu, Z. Y., 2009, A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data: Applied Geophysics, 6(3), 226 - 233.
[29] Wang, W. Y., Zhang, G. C., and Liang, J. S., 2010, Spatial variation law of vertical derivative zero points for potential field data: Applied Geophysics, 7(3), 197 - 209.
[30] Wu, X. Z., Liu, G. H., Xue, G. Q., Wang, Y. J., and Bai, D. M., 1987, Analysis of method and application on Fourier transform and potential field spectrum: Surveying and Mapping Press, Beijing.
[31] Zeng, H. L., Zhang, Q. H., and Liu, J., 1994, Location of secondary faults from cross-correlation of the second vertical derivative of gravity anomalies: Geophysical Prospecting, 42(8), 841 - 854.
[32] Zhang, F. X., Meng, L. S., Zhang, F. Q., Liu, C., Wu, Y. G., and Du, X. J., 2006, A new method for spectral analysis of the potential field and conversion of derivative of gravity-anomalies: Cosine transform: Chinese Journal of Geophysics, 49(1), 244 - 248.
[33] Zhang, F. X., Zhang, F. Q., Meng, L. S., and Liu, C., 2007, Magnetic potential spectrum analysis and calculating method of magnetic anomaly derivatives based on discrete cosine transform: Chinese Journal of Geophysics, 50(1), 282 - 290.
[34] Zhdanov, M. S., Ellis, R., and Mukherjee, S., 2004, Three-dimensional regularized focusing inversion of gravity gradient tensor component data: Geophysics, 69(4), 925 - 937.
[1] Dai Shi-Kun, Zhao Dong-Dong, Zhang Qian-Jiang, Li Kun, Chen Qing-Rui, and Wang Xu-Long. Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in space-wavenumber mixed domain[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 513-523.
[2] Cao Zhong-Lin, Cao Jun-Xing, Wu Fu-Rong, He Guang-Ming, Zhou Qiang, and Wu Yu-Lin. Mixed Cadzow filtering method in fractional Fourier domain[J]. APPLIED GEOPHYSICS, 2018, 15(2): 271-279.
[3] Xu Xiao-Hong, Qu Guang-Zhong, Zhang Yang, Bi Yun-Yun, Wang Jin-Ju. Ground-roll separation of seismic data based on morphological component analysis in two-dimensional domain[J]. APPLIED GEOPHYSICS, 2016, 13(1): 116-126.
[4] Yang Ya-Peng, Wu Mei-Ping, Tang Gang. Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming[J]. APPLIED GEOPHYSICS, 2015, 12(2): 147-156.
[5] Ge Zi-Jian, Li Jing-Ye, Pan Shu-Lin, Chen Xiao-Hong. A fast-convergence POCS seismic denoising and reconstruction method[J]. APPLIED GEOPHYSICS, 2015, 12(2): 169-178.
[6] YUAN Yuan, HUANG Da-Nian, YU Qing-Lu, GENG Mei-Xia. Noise filtering of full-gravity gradient tensor data[J]. APPLIED GEOPHYSICS, 2013, 10(3): 241-250.
[7] JIANG Fu-Yu, GAO Li-Kun. Edge enhancement of gravity anomalies and gravity gradient tensors using an improved small sub-domain filtering method*[J]. APPLIED GEOPHYSICS, 2012, 9(2): 119-130.
[8] TANG Gang, MA Jian-Wei, YANG Hui-Zhu. Seismic data denoising based on learning-type overcomplete dictionaries*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 27-32.
[9] XU De-Ping, GUO Ke. Fractional S transform – Part 1: Theory*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 73-79.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn