APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (3-4): 393-400    DOI: 10.1007/s11770-018-0700-y
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Modeling and inversions  of acoustic  reflection logging imaging using the combined monopole–dipole measurement mode
Gong Hao1,2,3,4, Chen Hao2,3, He Xiao2, Su Chang2, Wang Xiu-Ming2,3, Wang Bai-Cun1,4, and Yan Xiao-Hui4
1. Tsinghua University, Beijing 100084, China.
2. State Key Laboratory of Acoustics, Beijing Engineering Research Center of Deep Drilling Exploration and Measurement, Institute of Acoustics, Beijing 100190, China.
3. University of Chinese Academy of Sciences, Beijing 100049, China.
4. Chinese Academy of Engineering, Beijing 100088, China.
 Download: PDF (693 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In this paper, we theoretically and numerically study a combined monopole–dipole measurement mode to show its capability to overcome the issues encountered in conventional single-well imaging, i.e., the low signal-to-noise ratio of the reflections and azimuth ambiguity. First, the azimuth ambiguity, which exists extensively in conventional single-well imaging, is solved with an improved imaging procedure using combined monopole–dipole logging data in addition to conventional logging data. Furthermore, we demonstrate that the direct waves propagating along the boreholes with strong energy, can be effectively eliminated with the proposed combined monopole–dipole measurement mode. The reflections are therefore predominant in the combined monopole–dipole data even before the signals are filtered; thus, the reflections’ arrival times in each receiver are identified, which may help minimize the difficulties in filtering conventional logging data. The optimized processing flow of the combined measurement mode logging image is given in this paper. The proposed combined monopole–dipole measurement mode may improve the accuracy of single-well imaging.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsSingle well   imaging   azimuth ambiguity   multicomponent   wave separation     
Received: 2017-03-13;
Fund:

The work was supported by the National Natural Science Foundation of China (Nos. 11574347, 11374322, 11134011, 11734017, and 91630309) and PetroChina Innovation Foundation (No. 2016D-5007-0304).

Cite this article:   
. Modeling and inversions  of acoustic  reflection logging imaging using the combined monopole–dipole measurement mode[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 393-400.
 
[1] Che, X. H., Qiao, W. X., Ju, X. D., Wu, J. P., and Men, B. Y., 2017, Experimental study on the performance of an azimuthal acoustic receiver sonde for a downhole tool: Geophysical Prospecting, 65(1), 1-12.
[2] Coates, R., Kane, M., Chang, C., Esmersoy, C., Fukuhara, M., and Yamamoto, H., 2000, Single-well sonic imaging: High-definition reservoir cross-sections from horizontal wells: SPE/CIM International Conference on Horizontal Well Technology, Society of Petroleum Engineers.
[3] Esmersoy, C., Chang, C., Kane, M., Coates, R., Tichelaar, B., and Quint, E., 1998, Acoustic imaging of reservoir structure from a horizontal well: The Leading Edge, 17, 940-946.
[4] Gong, H., Chen, H., He, X., and Wang, X., 2015, Eliminating the azimuth ambiguity in single-well imaging using 3C sonic data: Geophysics, 80(1), A13-A17.
[5] Haldorsen, J., Voskamp, A., Thorsen, R., Vissapragada, B., Williams, S., and Fejerskov, M., 2006, Borehole acoustic reflection survey for high resolution imaging: SEG Annual Meeting, Society of Exploration Geophysicists.
[6] Hornby, B. E., 1989, Imaging of near-borehole structure using full-waveform sonic data: Geophysics, 54, 747-757.
[7] Kurkjian, A. L., and Chang, S. K., 1986, Acoustic multipole sources in fluid-filled boreholes: Geophysics, 51(1), 148-163.
[8] Liu, Q. H., Schoen, E., Daube, F., Randall, C., Liu, H. L., and Lee, P., 1996, A three-dimensional finite difference simulation of sonic logging: The Journal of the Acoustical Society of America, 100(1), 72-79.
[9] Li, J., Tao, G., Zhang, K., Wang, B., and Wang, H., 2014, An effective data processing flow for the acoustic reflection image logging: Geophysical Prospecting, 62(3), 530-539.
[10] Li, C., and Yue, W., 2015, High-resolution adaptive beamforming for borehole acoustic reflection imaging,Geophysics, 80(6), D565-D574.
[11] Sun, R., McMechan, G. A., Lee, C. S., Chow, J., and Chen, C. H., 2006, Prestack scalar reverse-time depth migration of 3D elastic seismic data: Geophysics, 71(5), S199-S207.
[12] Tang, X. M., 2004, Imaging near-borehole structure using directional acoustic-wave measurement: Geophysics, 69, 1378-1386.
[13] Tang, X. M., Zheng, Y., and Patterson, D., 2007, Processing array acoustic-logging data to image near-borehole geologic structures: Geophysics, 72(2), E87-E97.
[14] Tang, X. M., and Patterson, D., 2009, Single-well S-wave imaging using multicomponent dipole acoustic-log data: Geophysics, 74(6), A211-A223.
[15] Wang, B., Zhang, K., Tao, G., Liu, H., and Zhang, X. L., 2018, Acoustic reflection well logging modeling in the frequency domain with a hybrid PML: Applied Geophysics, 15(1), 35-45.
[16] Wang, H., Tao, G., Zhang, K., and Li, J. X., 2012, Numerical Simulations for Acoustic Reflection Imaging with FDM and FEM: 74th EAGE Conference and Exhibition incorporating EUROPEC 2012.
[17] Wang, Z., Hu, H., and Yang, Y., 2015, Reciprocity relations for the elastodynamic fields generated by multipole sources in a fluid-solid configuration: Geophysical Journal International, 203(2), 883-892.
[18] Wei, Z. T., and Tang, X. M., 2012, Numerical simulation of radiation, reflection, and reception of elastic waves from a borehole dipole source: Geophysics, 77(6), D253-D261.
[19] Zhang, Y. D., and Hu, H., 2014, A technique to eliminate the azimuth ambiguity in single-well imaging: Geophysics, 79(6), D409-D416.
[20] Zhang, G., Li, N., Guo, H. W., Wu, H. L., and Luo, C., 2015, Fracture identification based on remote detection acoustic reflection logging: Applied Geophysics, 12(4), 473-481.
[1] Cai Zhong-Zheng, Han Li-Guo, and Xu Zhuo. Passive multiple reverse time migration imaging based on wave decomposition and normalized imaging conditions*[J]. APPLIED GEOPHYSICS, 2019, 16(3): 338-348.
[2] Wu Xiao, Liu Yang, Wang Yong, Xu Shi-Gang, and Jia Wan-Li. An improved fast converted-wave imaging method[J]. APPLIED GEOPHYSICS, 2019, 16(2): 173-194.
[3] Xue Hao and Liu Yang. Reverse-time migration using multidirectional wavefield decomposition method[J]. APPLIED GEOPHYSICS, 2018, 15(2): 222-233.
[4] Kong Xue, Wang De-Ying, Li Zhen-Chun, Zhang Rui-Xiang, Hu Qiu-Yuan. Diffraction separation by plane-wave prediction filtering[J]. APPLIED GEOPHYSICS, 2017, 14(3): 399-405.
[5] Meng Qing-Xin, Hu Xiang-Yun, Pan He-Ping, Zhou Feng. 10.1007/s11770-017-0600-6[J]. APPLIED GEOPHYSICS, 2017, 14(1): 175-186.
[6] Liu Qiang, Han Li-Guo, Chen Jing-Yi, Chen Xue, Zhang Xian-Na. Separation of inhomogeneous blended seismic data[J]. APPLIED GEOPHYSICS, 2015, 12(3): 327-333.
[7] Wu Juan, Chen Xiao-Hong, Bai Min, Liu Guo-Chang. Attenuation compensation in multicomponent Gaussian beam prestack depth migration[J]. APPLIED GEOPHYSICS, 2015, 12(2): 157-168.
[8] DU Qi-Zhen, ZHANG Ming-Qiang, CHEN Xiao-Ran, GONG Xu-Fei, GUO Cheng-Feng. True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain[J]. APPLIED GEOPHYSICS, 2014, 11(4): 437-446.
[9] CHEN Ting, HE Bing-Shou. A normalized wavefield separation cross-correlation imaging condition for reverse time migration based on Poynting vector[J]. APPLIED GEOPHYSICS, 2014, 11(2): 158-166.
[10] WANG Pu, HU Tian-Yue. AVO approximation for PS-wave and its application in PP/PS joint inversion[J]. APPLIED GEOPHYSICS, 2011, 8(3): 189-196.
[11] DU Qi-Zhen, SUN Rui-Yan, QIN Tong, ZHU Yi-Tong, BI Li-Fei. A study of perfectly matched layers for joint multi-component reverse-time migration[J]. APPLIED GEOPHYSICS, 2010, 7(2): 166-173.
[12] LU Jun, WANG Bin, YANG Chun-Ying. Instantaneous polarization filtering focused on suppression of surface waves[J]. APPLIED GEOPHYSICS, 2010, 7(1): 88-97.
[13] LU Jun, WANG Bin, YANG Chun-Ying. Instantaneous polarization filtering focused on suppression of surface waves[J]. APPLIED GEOPHYSICS, 2010, 6(1): 88-97.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn