APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2017, Vol. 14 Issue (4): 606-619    DOI: 10.1007/s11770-017-0649-2
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |   
Translation-invariant wavelet denoising of full-tensor gravity –gradiometer data
Zhang Dai-Lei1, Huang Da-Nian1, Yu Ping1, and Yuan Yuan2,3
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. The Second Institute of Oceanography, the State Oceanic Administration, Hangzhou 310012, China.
3. Key Laboratory of Submarine Geoscience, the State Oceanic Administration, Hangzhou 310012, China.
 Download: PDF (1783 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Denoising of full-tensor gravity-gradiometer data involves detailed information from field sources, especially the data mixed with high-frequency random noise. We present a denoising method based on the translation-invariant wavelet with mixed thresholding and adaptive threshold to remove the random noise and retain the data details. The novel mixed thresholding approach is devised to filter the random noise based on the energy distribution of the wavelet coefficients corresponding to the signal and random noise. The translation-invariant wavelet suppresses pseudo-Gibbs phenomena, and the mixed thresholding better separates the wavelet coefficients than traditional thresholding. Adaptive Bayesian threshold is used to process the wavelet coefficients according to the specific characteristics of the wavelet coefficients at each decomposition scale. A two-dimensional discrete wavelet transform is used to denoise gridded data for better computational efficiency. The results of denoising model and real data suggest that compared with Gaussian regional filter, the proposed method suppresses the white Gaussian noise and preserves the high-frequency information in gravity-gradiometer data. Satisfactory denoising is achieved with the translation-invariant wavelet.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordstensor   gravity gradiometry   denoising   threshold   translation-invariant wavelet     
Received: 2017-05-19;
Fund:

The research was jointly supported by the National Key Research and Development Plan Issue (Nos. 2017YFC0602203 and 2017YFC0601606), the National Science and Technology Major Project Task (No. 2016ZX05027-002-003), the National Natural Science Foundation of China (Nos. 41604089 and 41404089), the State Key Program of National Natural Science of China (No. 41430322), the Marine/Airborne Gravimeter Research Project (No. 2011YQ12004505), the State Key Laboratory of Marine Geology, Tongji University (No. MGK1610), and the Basic Scientific Research Business Special Fund Project of Second Institute of Oceanography, State Oceanic Administration (No. 14275-10).

Cite this article:   
. Translation-invariant wavelet denoising of full-tensor gravity –gradiometer data[J]. APPLIED GEOPHYSICS, 2017, 14(4): 606-619.
 
[1] Barnes, G., and Lumley, J., 2010, Noise analysis and reduction in full tensor gravity gradiometry data: Airborne Gravity, 21?27.
[2] Barnes, G., and Lumley, J., 2011, Processing gravity gradient data: Geophysics, 76(2), I33?I47.
[3] Boschetti, F., Hornby, P., and Horowitz, F. G., 2001, Wavelet based inversion of gravity data: Exploration Geophysics, 32(1), 48?55.
[4] Chang, S. G., Yu, B., and Vetterli, M., 2000, Adaptive wavelet thresholding for image denoising and compression: IEEE Transactions on Image Processing, 9(9), 1532?1546.
[5] Coifman, R. R., and Donoho, D. L., 1995, Translation-invariant de-noising: Wavelets and Statistics, chapter, New York: Springer-Verlag, 103, 125-150.
[6] Di Francesco, D., 2013, The coming age of gravity gradiometry: 23rd International Geophysical Conference and Exhibition, SEG, Expended Abstracts, 1?4.
[7] Dransfield, M. H., and Chrisenten, A. N., 2013, Performance of airborne gravity gradiometers: The Leading Edge: Gravity and Potential Fields, 32(8), 908?922.
[8] Donoho, D. L., 1995, De-noising by soft-thresholding: IEEE Transactions on Information Theory, 41(3), 613?627.
[9] Donoho, D. L., and Johnstone, I. M., 1994, Adapting to unknown smoothness via wavelet shrinkage: J. Am. Statist. Assoc., 90, 1200?1224.
[10] Donoho, D. L., and Johnstone, I. M., 1994, Ideal spatial adaptation by wavelet shrinkage: Biometrika, 81(3), 425-455.
[11] Fedi, M., Lenarduzzi, L., Primiceri, R., and Quarta, T., 2000, Localized denoising filtering using wavelet transform: Pure and Applied Geophysics, 157, 1463?1491.
[12] Fitzgerald, D., Argast, D., and Holstein, H., 2009, Further development with full tensor gradiometry datasets: ASEG, Extended Abstracts, Perth, Australia, 1-7.
[13] Forsberg, R., 1984, A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling: Report 355, Department of Geodetic Science and Surveying, Ohio State University.
[14] Ismail B., and Khan A., 2012, Image denoising with a new threshold value using wavelets: Journal of Data Science, 10, 259?270.
[15] Lee, J. B., 2001, FALCON gravity gradiometer technology: Exploration Geophysics, 32(3, 4), 247?250.
[16] Li, X., and Chouteau, M., 1998, Three-dimensional gravity modelling in all space: Survey in Geophysics, 19(4), 339?368.
[17] Li, Y. G., 2001, Processing gravity gradiometer data using an equivalent source technique: 71st Annual international meeting, SEG, Expanded Abstract, 1466?1469.
[18] Liang, J. W., 2001, A physical interpretation of wavelet analysis for potential fields: Chinese journal of Geophysics, 44(6), 865?870.
[19] Lyrio, J. C. S., Tenorio, L., and Li, Y. G., 2004, Efficient automatic denoising of gravity gradiometry data: Geophysics, 69(3), 772?782.
[20] Mallat, S. G., 1989, A theory for multi-resolution signal decomposition: the wavelet representation: IEEE transactions on pattern analysis and machine intelligence, 11(7), 674?693.
[21] Mallat, S. G., 1999, A wavelet tour of signal processing, Second Edition, San Diego, Academic Press.
[22] Pan, Q., Meng, J. L., Zhang, L., Cheng, Y. M., and Zhang, H. C., 2007, Wavelet filtering method and its application: Journal of Electronics & Information Technology, 29(1), 236?242.
[23] Pajot, G., de Viron, O., Diament, M., Lequentrec-Lalancette, M. F., and Mikhailov, V., 2008, Noise reduction through joint processing of gravity and gravity gradient data: Geophysics, 73(3), I23?I34.
[24] Pilkington, M., and Shamsipour, P., 2014, Noise reduction procedures for gravity-gradiometer data: Geophysics, 79(5), G69?G78.
[25] Sanchez, V., Sinex, D., Li, Y. G., Nabighian, M., Wright, D., and Smith, D., 2005, Processing and inversion of magnetic gradient tensor data for UXO applications: 18th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, 1193?1202.
[26] Singh, B. N., and Tiwari, A. K., 2006, Optimal selection of wavelet basis function applied to ECG signal denoising: Digital Signal Processing, 16, 275?287.
[27] Sun, T. Y., Liu, C.C., Hsieh, T. S., Tsai, T. Y., and Jheng, H. J., 2008, Optimal determination of wavelet threshold and decomposition level via heuristic learning for noise reduction: IEEE Conference on Soft Computing in Industrial Applications (SMCia/08), Muroran, Japan, 405?410.
[28] Oliveira, V. C., and Barbosa, V. C. F., 2013, 3-D radial gravity gradient inversion: Geophysical Journal International, 195, 883?902.
[29] Yuan, Y., Huang, D. N., Yu, Q. L., and Geng, M. X., 2013, Noise filtering of full-gravity gradient tensor data: Applied Geophysics, 10(3), 241?250.
[1] Yan Jian-Ping, He Xu, Hu Qin-Hong, Liang Qiang, Tang Hong-Ming, Feng Chun-Zhen, and Geng Bin. Lower Es3 in Zhanhua Sag, Jiyang Depression: a case study for lithofacies classification in lacustrine mud shale[J]. APPLIED GEOPHYSICS, 2018, 15(2): 151-164.
[2] Cao Zhong-Lin, Cao Jun-Xing, Wu Fu-Rong, He Guang-Ming, Zhou Qiang, and Wu Yu-Lin. Mixed Cadzow filtering method in fractional Fourier domain[J]. APPLIED GEOPHYSICS, 2018, 15(2): 271-279.
[3] Sun Xiao-Dong, Li Zhen-Chun, Jia Yan-Rui. Variable-grid reverse-time migration of different  seismic survey data[J]. APPLIED GEOPHYSICS, 2017, 14(4): 517-522.
[4] Zhao Yu-Min, Li Guo-Fa, Wang Wei, Zhou Zhen-Xiao, Tang Bo-Wen, Zhang Wen-Bo. Inversion-based data-driven time-space domain random noise attenuation method[J]. APPLIED GEOPHYSICS, 2017, 14(4): 543-550.
[5] Li Guang, Xiao Xiao, Tang Jing-Tian, Li Jin, Zhu Hui-Jie, Zhou Cong, Yan Fa-Bao. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering[J]. APPLIED GEOPHYSICS, 2017, 14(4): 581-590.
[6] Kong Xue, Wang De-Ying, Li Zhen-Chun, Zhang Rui-Xiang, Hu Qiu-Yuan. Diffraction separation by plane-wave prediction filtering[J]. APPLIED GEOPHYSICS, 2017, 14(3): 399-405.
[7] Wang Tai-Han, Huang Da-Nian, Ma Guo-Qing, Meng Zhao-Hai, Li Ye. Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data[J]. APPLIED GEOPHYSICS, 2017, 14(2): 301-313.
[8] Wang De-Ying, Ling Yun. Phase-shift- and phase-filtering-based surface-wave suppression method[J]. APPLIED GEOPHYSICS, 2016, 13(4): 614-620.
[9] Fan Jing-Wen, Li Zhen-Chun, Zhang Kai, Zhang Min, Liu Xue-Tong. Multisource least-squares reverse-time migration with structure-oriented filtering[J]. APPLIED GEOPHYSICS, 2016, 13(3): 491-499.
[10] Seyyed Ali Fa’al Rastegar, Abdolrahim Javaherian, Naser Keshavarz Farajkhah. Ground-roll attenuation using modified common-offset–common-reflection-surface stacking[J]. APPLIED GEOPHYSICS, 2016, 13(2): 353-363.
[11] Ma Yan-Yan, Li Guo-Fa, Wang Yao-Jun, Zhou Hui, Zhang Bao-Jiang. Random noise attenuation by f–x spatial projection-based complex empirical mode decomposition predictive filtering[J]. APPLIED GEOPHYSICS, 2015, 12(1): 47-54.
[12] CAI Han-Peng, HE Zhen-Hua, LI Ya-Lin, HE Guang-Ming, ZOU Wen, ZHANG Dong-Jun, LIU Pu. An adaptive noise attenuation method for edge and amplitude preservation[J]. APPLIED GEOPHYSICS, 2014, 11(3): 289-300.
[13] ZHANG Gu-Lan, WANG Xi-Ming, HE Zhen-Hua, CAO Jun-Xing, LI Ke-恩, RONG Jiao-Jun. Interval Q inversion based on zero-offset VSP data and applications[J]. APPLIED GEOPHYSICS, 2014, 11(2): 235-244.
[14] XU Hui-Qun, GUI Zhi-Xian. Signal-to-noise ratio application to seismic marker analysis and fracture detection[J]. APPLIED GEOPHYSICS, 2014, 11(1): 73-79.
[15] TAN Yu-Yang, HE Chuan, WANG Yan-Dong, ZHAO Zhong. Ground roll attenuation using a time-frequency dependent polarization filter based on the S transform[J]. APPLIED GEOPHYSICS, 2013, 10(3): 279-294.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn