APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2012, Vol. 9 Issue (1): 41-48    DOI: 10.1007/s11770-012-0312-x
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Accelerating finite difference wavefi eld-continuation depth migration by GPU*
Liu Guo-Feng1,2, Meng Xiao-Hong1, and Liu Hong2
1. Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing 100083, China.
2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
 Download: PDF (902 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The most popular hardware used for parallel depth migration is the PC-Cluster but its application is limited due to large space occupation and high power consumption. In this paper, we introduce a new hardware architecture, based on which the fi nite difference (FD) wavefield-continuation depth migration can be conducted using the Graphics Processing Unit (GPU) as a CPU coprocessor. We demonstrate the program module and three key optimization steps for implementing FD depth migration: memory, thread structure, and instruction optimizations and consider evaluation methods for the amount of optimization. 2D and 3D models are used to test depth migration on the GPU. The tested results show that the depth migration computational efficiency greatly increased using the general-purpose GPU, increasing by at least 25 times compared to the AMD 2.5 GHz CPU.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LIU Guo-Feng
MENG Xiao-Hong
LIU Hong
Key wordsWavefield-continuation depth migration   finite difference   Graphic Processing Unit   effi ciency     
Received: 2011-02-19;
Fund:

This work is supported by the National Natural Science Foundation of China (Nos. 41104083 and 40804024) and the Fundamental Research Funds for the Central Universities (No, 2011YYL022).

About author: Liu Guo-Feng: See biography and photo in the Applied Geophysics June 2009 issue, P. 137. Email: liugf@cugb.edu.cn
Cite this article:   
LIU Guo-Feng,MENG Xiao-Hong,LIU Hong. Accelerating finite difference wavefi eld-continuation depth migration by GPU*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 41-48.
 
[1] Biondi, B., 2006, 3D seismic imaging: Society of Exploration Geophysicists, Tulsa.
[2] Biondi, B., and Palacharla., G., 1996, 3-D prestack migration of common-azimuth data: Geophysics, 61,1822 - 1832.
[3] Claerbout, J. F., 1971, Toward a unified theory of reflector mapping: Geophysics, 36, 467 - 481.
[4] Claerbout, J. F., 1985, Imaging the earth’s interior: Blackwell Scientific Publications, USA.
[5] Gazdag, J., 1978, Wave equation migration with the phase shift method: Geophysics, 43, 1342 - 1351.
[6] Gazdag, J., and Sguazzero, P., 1984, Migration of seismic data by phase-shift plus interpolation: Geophysics, 49,
[7] 4 - 131.
[8] Hale, D., 1991, 3-D depth migration via McClellan transformation: Geophyscis, 56, 1778 - 1785.
[9] Lee, M., and Suh, S., 1985, Optimization of one-way equation: Geophysics, 50, 1634 - 1637.
[10] Li, Z., 1991, Compensating finite-difference errors in 3-D migration and modeling: Geophysics, 56, 1650 - 1660.
[11] Liu, H., Yuan, J. H., Chen, J. B., Shou, H., 2007, Large step wavefield-continuation depth migration: Chinese Journal
[12] of Geophysics (in Chinese), 49(6), 1779 - 1793.
[13] Liu, G. F., Liu, H., Li, B., Tong, X, L., and Liu, Q., Method of prestack time migration of seismic data of
[14] mountainous regions and its GPU implementation: Chinese Journal of Geophysics (in Chinese), 51(12),
[15] 01 - 3108.
[16] Ma, Z. T., 1982, Finite-difference migration with higherorder approximation: Oil Geophysical Prospecting (in
[17] Chinese), 17, 6 - 15.
[18] Morton, S. A., and Ober, C. C., 1998, Faster shot record migration using phase encoding: 68th Ann. Internat.
[19] Mtg., Soc. Expl. Geophys., Expanded Abstract, 1131 - 1134.
[20]
[21] Operto, M. S., Xu, S., and Lambaré, G., 2000, Can we quantitatively image complex structures with rays?:
[22] Geophysics, 65, 1223 - 1238.
[23] Ristow, D., and Ruhl, T., 1994, Fourier finite-difference migration: Geophysics, 59, 1881-1893.
[24] Stolt, R. H., 1978, Migration by Fourier transform: Geophysics, 43, 23 - 48.
[25] Stoffa, P. L., Fokkema, J. T., de Luna Freire, R. M., and Kessinger, W. P., 1990, Split-step Fourier migration:
[26] Geophysics, 55, 410 - 421.
[27] Shi, X. H., Li, C., Wang, S. H., Wang, X., 2010, Computing prestack Kirchhoff time migration on general purpose
[28] GPU: Computers and Geosciences, doi:10.1016/ j.cageo.2010.10.014.
[29] Temme, P., 1984, A comparison of common-midpoint single-shot and plane-wave depth migration: Geophysics,
[30] , 1896 - 1907.
[31] Wang, X., Gao, X., and Yao, Z. X., 2010, Accelerating POCS interpolation of 3D irregular seismic data with
[32] graphics processing units: Computers and Geosciences, 36, 1292 - 1300.
[33] Xie, X. B., and Wu, R. S., 1999, Improving the wide angle accuracy of the screen propagator for elastic
[34] wave propagation: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1863 - 1866.
[35] Yilmaz, O., 1987,Seismic Data Processing: Society of Exploration Geophysicists, Tulsa
[1] Hou Zhen-Long, Huang Da-Nian, Wang En-De, and Cheng Hao. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. APPLIED GEOPHYSICS, 2019, 16(2): 141-153.
[2] Liu Guo-Feng, Meng Xiao-Hong, Yu Zhen-Jiang, and Liu Ding-Jin. An efficient scheme for multi-GPU TTI reverse time migration*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 61-69.
[3] Cheng Jing-Wang, Fan Na, Zhang You-Yuan, and Lü Xiao-Chun. Irregular surface seismic forward modeling by a body-fitted rotated–staggered-grid finite-difference method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 420-431.
[4] Cao Xue-Shen Chen Hao, Li Ping, He Hong-Bin, Zhou Yin-Qiu, and Wang Xiu-Ming. Wideband dipole logging based on segment linear frequency modulation excitation[J]. APPLIED GEOPHYSICS, 2018, 15(2): 197-207.
[5] Ren Ying-Jun, Huang Jian-Ping, Yong Peng, Liu Meng-Li, Cui Chao, and Yang Ming-Wei. Optimized staggered-grid finite-difference operators using window functions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 253-260.
[6] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[7] Fang Gang, Ba Jing, Liu Xin-Xin, Zhu Kun, Liu Guo-Chang. Seismic wavefield modeling based on time-domain symplectic  and Fourier finite-difference method[J]. APPLIED GEOPHYSICS, 2017, 14(2): 258-269.
[8] Wang Tai-Han, Huang Da-Nian, Ma Guo-Qing, Meng Zhao-Hai, Li Ye. Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data[J]. APPLIED GEOPHYSICS, 2017, 14(2): 301-313.
[9] Zhang Yu, Ping Ping, Zhang Shuang-Xi. Finite-difference modeling of surface waves in poroelastic media and stress mirror conditions[J]. APPLIED GEOPHYSICS, 2017, 14(1): 105-114.
[10] Zhang Jian-Min, He Bing-Shou, Tang Huai-Gu. Pure quasi-P wave equation and numerical solution in 3D TTI media[J]. APPLIED GEOPHYSICS, 2017, 14(1): 125-132.
[11] Chen Hui, Deng Ju-Zhi Yin Min, Yin Chang-Chun, Tang Wen-Wu. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method[J]. APPLIED GEOPHYSICS, 2017, 14(1): 154-164.
[12] Meng Qing-Xin, Hu Xiang-Yun, Pan He-Ping, Zhou Feng. 10.1007/s11770-017-0600-6[J]. APPLIED GEOPHYSICS, 2017, 14(1): 175-186.
[13] Tao Bei, Chen De-Hua, He Xiao, Wang Xiu-Ming. Rough interfaces and ultrasonic imaging logging behind casing[J]. APPLIED GEOPHYSICS, 2016, 13(4): 683-688.
[14] Chang Jiang-Hao, Yu Jing-Cun, Liu Zhi-Xin. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf[J]. APPLIED GEOPHYSICS, 2016, 13(3): 539-552.
[15] Wang Tao, Tan Han-Dong, Li Zhi-Qiang, Wang Kun-Peng, Hu Zhi-Ming, Zhang Xing-Dong. 3D finite-difference modeling algorithm and anomaly features of ZTEM[J]. APPLIED GEOPHYSICS, 2016, 13(3): 553-560.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn