APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2017, Vol. 14 Issue (2): 225-235    DOI: 10.1007/s11770-017-0621-1
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Inversion of river-bottom sediment parameters using mechanically sampled specimens and subbottom profiling data
Li Chang-Zheng1, Yang Yong1, Wang Rui1, and Zheng Jun1
1. The Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China.
 Download: PDF (799 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanically sampled specimens and from subbottom profiling. However, mechanical sampling introduces disturbances that affect test results, with the exception of grain-size distribution. In this study, we perform inversion of acoustic data using the grain-size distribution of mechanically sampled specimens and the relation between porosity and permeability from the Kozeny–Carman equation as prior information. The wave reflection coefficient of the water–silt interface is extracted from the raw subbottom profile. Based on the effective density fluid model, we combine the Kozeny–Carman equation and the wave reflection coefficient. We use experimental data from two Yellow River reservoirs to obtain the wave velocity and density of multiple sections and their spatial variations, and find that the inversion and testing results are in good agreement.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsmechanical sampling   river sediment   subbottom profiling   density   inversion     
Received: 2016-05-25;
Fund:

This work was supported by the Ministry of Water Resources Special Funds for Scientific Research on Public Causes (No. 201301024), the Special Funds for Yellow River Institute of Hydraulic Research (No. HKY-JBYW-2016-09 and No. HKY-JBYW-2016-29).

Cite this article:   
. Inversion of river-bottom sediment parameters using mechanically sampled specimens and subbottom profiling data[J]. APPLIED GEOPHYSICS, 2017, 14(2): 225-235.
 
[1] Bachman, R. T., 1985, Acoustic and physical property relationships in marine sediment: The Journal of the Acoustical Society of America, 78(2), 616−621.
[2] Biot, M. A., 1956a, Theory of propagation of elastic waves in a fluid‐saturated porous solid. I. Low‐frequency range: The Journal of the Acoustical Society of America, 28(2), 168−178.
[3] Biot, M. A., 1956b, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range: The Journal of the Acoustical Society of America, 28(2), 179−191.
[4] Chiu, L., Chang A., Lin, Y. T., and Liu, C. S., 2015, Estimating geoacoustic properties of surficial sediments in the North Mien-Hua Canyon region with a chirp sonar profiler: IEEE Journal of Oceanic Engineering, 40(1), 222−236.
[5] Chotiros, N. P., and Isakson, M. J., 2002, Normal incidence reflection loss from a sandy sediment: The Journal of the Acoustical Society of America, 112(5), 1831−1841.
[6] Hamilton, E. L., 1980, Geoacoustic modeling of the sea floor: The Journal of the Acoustical Society of America, 68(5), 1313−1340.
[7] Holland, C. W., and Brunson, B. A., 1988, The Biot-Stoll sediment model: An experimental assessment: The Journal of the Acoustical Society of America, 84(4), 1437−1443.
[8] Hovem, J. M., and Ingram, G. D., 1979, Viscous attenuation of sound in saturated sand:The Journal of the Acoustical Society of America, 66(6), 1807−1812.
[9] LeBlanc, L. R., Mayer, L., Rufino, M., Schock, S. G., and King, J., 1992, Marine sediment classification using the chirp sonar: The Journal of the Acoustical Society of America, 91(1), 107−115.
[10] Long, J. J., and Li, G. X., 2015, Theoretical relations between sound velocity and physical-mechanical properties for seafloor sediments: ACTA ACUSTICA, 40(3), 462−468.
[11] Lotter, A. F., Merkt, J., and Sturm, M., 1997, Differential sedimentation versus coring artifacts: a comparison of two widely used piston-coring methods:Journal of Paleolimnology, 18(1), 75−85.
[12] Panda, S., LeBlanc, L. R., and Schock, S. G., 1994, Sediment classification based on impedance and attenuation estimation: The Journal of the Acoustical Society of America, 96(5), 3022−3035.
[13] Qin, H. W., Chen, Y., Gu, L. Y., 2007, Research on disturbing theory of deep-sea sediment sampling: ACTA OCEANOLOGICA SINICA, 29(2), 92−97.
[14] Qin, H. W., Chen, Y., Gu, L. Y., Li, S. L., Tao, J., and Geng, X. Q., 2009, The development of gas-tight sampling techniques: JOURNAL OF TROPICAL OCEANOGRAPHY, 28(4), 42−48.
[15] Schock, S. G., 2004, A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data: IEEE Journal of Oceanic Engineering, 29(4),1200−1217.
[16] Schrottke, K., Becker, M., Bartholomä, A., Flemming, B. W., and Hebbeln, D., 2006, Fluid mud dynamics in the Weser estuary turbidity zone tracked by high-resolution side-scan sonar and parametric sub-bottom profiler: Geo-Marine Letters, 26(3), 185−198.
[17] Stevenson, I. R., McCann C., and Runciman, P. B., 2002, An attenuation-based sediment classification technique using chirp sub-bottom profiler data and laboratory acoustic analysis: Marine Geophysical Researches, 23(4), 277−298.
[18] Stoll, R. D., 1977, Acoustic waves in ocean sediments: Geophysics, 42(4), 715−725.
[19] Stoll, R. D., 1980, Theoretical aspects of sound transmission in sediments: The Journal of the Acoustical Society of America, 68(5), 1341−1350.
[20] Turgut, A., and Yamamoto, T., 1990, Measurements of acoustic wave velocities and attenuation in marine sediments: The Journal of the Acoustical Society of America, 87(6), 2376−2383.
[21] Williams, K. L., 2001, An effective density fluid model for acoustic propagation in sediments derived from Biot theory: The Journal of the Acoustical Society of America, 110(5), 2276−2281.
[22] Zou, D. P., Wu, B. H., Lu, B., Zeng, J. Y., Lin, Q., and Long, J. J., 2008, A study on correction of acoustic velocity in seafloor sediments measured in laboratory: JOU RNAL OF TROPICAL OCEANOGRAPHY, 27(1), 27−31.
[23] Zheng, J., Tang, H., Guo,W. K., Zhang, X., and Fan, T., 2014, Preliminary Analysis on the Physical Characteristics of the Deep Sediment in Xiaolangdi Reservoir: YELLOW RIVER, 36(10), 23−25.
[1] Li Chang-Zheng, Yang Yong, Wang Rui, Yan Xiao-Fei. Acoustic parameters inversion and sediment properties in the Yellow River reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(1): 78-90.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn