APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2017, Vol. 14 Issue (1): 115-124    DOI: 10.1007/s11770-017-0596-y
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Cosine-modulated window function-based staggered-grid finite-difference forward modeling
Wang Jian1, Meng Xiao-Hong1, Liu Hong2, Zheng Wan-Qiu1, and Gui Sheng2
1. School of Geophysics and Information Engineering, China University of Geosciences, Beijing 100083, China.
2. Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
 Download: PDF (869 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid intervals. In this study, the cosine-modulated binomial window function (CMBWF)-based staggered-grid finite-difference method is proposed. Two new parameters, the modulated time and modulated range are used in the new window function and by adjusting these two parameters we obtain different characteristics of the main and side lobes of the amplitude response. Numerical dispersion analysis and elastic wavefield forward modeling suggests that the CMBWF method is more precise and less computationally costly than the conventional Taylor series expansion staggered-grid finite-difference method.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsElastic wave   staggered grid   window function   cosine modulate     
Received: 2016-03-09;
Fund:

This work was supported by the National Major Research Equipment Development Projects (No. ZDYZ2012-1-02-04 ) and the National Natural Science Foundation of China (No. 41474106).

Cite this article:   
. Cosine-modulated window function-based staggered-grid finite-difference forward modeling[J]. APPLIED GEOPHYSICS, 2017, 14(1): 115-124.
 
[1] Alterman, Z., and Karal, F. C., 1968, Propagation of seismic wave in layered media by finite difference methods: Bulletin of Seismological Society of America, 58, 367−398.
[2] Carcione, J. M., Kosloff, D. D., Behle, A., and Seriani, G., 1992, A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media: Geophysics, 57, 1593−1607.
[3] Chu, C. L., and Stoffa, P. L., 2012, Determination of finite-difference weights using scaled binomial windows: Geophysics, 77, W17−W26.
[4] Dablain, M. A., 1986, The application of high-order differencing to the scalar wave equation: Geophysics, 51, 54−66.
[5] Diniz, P. S. R., Da Silva, E. A. B., and Netto, S. L., 2012, Digital signal processing system analysis and design: China Machine Press, Beijing.
[6] Fornberg, B., 1987, The pseudo spectral method: Comparisons with finite differences for the elastic wave equation: Geophysics, 52, 483−501.
[7] Gazdag, J., 1981, Modeling of the acoustic wave equation with transform methods: Geophysics, 46, 854−859.
[8] Igel, H., Mora, P., and Riollet, B., 1995, Anisotropic wave propagation through finite-difference grids: Geophysics, 60(4), 1203−1216.
[9] Kelly, K. R., Ward, R. W., Treitel, S., et al., 1976, Synthetic seismograms: A finite-difference approach: Geophysics, 41(1), 2−27.
[10] Kosloff, D. D., and Baysal, E., 1982, Forward modeling by a Fourier method: Geophysics, 47(10), 1402−1412.
[11] Liu, Y., and Sen, M. K., 2009, A new time-space domain high-order finite-different method for the acoustic wave equation: Journal of Computational Physics, 228, 8779-8806.
[12] Liu, Y., and Sen, M. K., 2010, Acoustic VTI modeling with a time-space domain dispersion-relation-based finite-difference scheme: Geophysics, 75, A11-A17.
[13] Li, Z., Zhang, H., and Liu, Q., 2007, Elastic wave staggered grid high-order finite difference method for numerical simulation of wavefield separation: Oil Geophysical Prospecting, 42(5), 510-515.
[14] Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations: Geophysics, 49, 533−549.
[15] Saenger, E. H., and Shapiro, S., 2002, An effective velocities in fractured media; A numerical study using the rotated staggered finite- difference grid: Geophysical Prospecting, 50, 183−194.
[16] Saenger, E. H., and Thomas, B., 2004, Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid: Geophysics, 69(2), 583−591.
[17] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity stress finite difference method: Geophysics, 51, 889-901.
[18] Weiss, R. M., and Shragge, J., 2013, Solving 3D anisotropic elastic wave equations on parallel GPU devices: Geophysics, 78, F7-F15.
[19] Yan, H., and Liu, Y., 2013a, Visco-acoustic pre-stack reverse-time migration based on the time-space domain adaptive high-order finite-difference method: Geophysical Prospecting, 61, 941-954.
[20] Yan, H., and Liu, Y., 2013b, Pre-stack reverse-time migration based on the time-space domain adaptive high-order finite-difference method in acoustic VTI medium: Journal of Geophysics and Engineering, 10, 1-10.
[21] Yang, L., Yan, H. Y., and Liu, H., 2014, Least squares staggered-grid finite-difference for elastic wave modeling: Exploration Geophysics, 45, 255-260.
[22] Zhao, J. G., and Shi, R. Q., 2013, A perfectly matched layer absorbing boundary condition for the finite-element time-domain modeling of elastic wave equation: Applied Geophysics, 10(3), 323−336.
[23] Zhao, J. G., Shi, R. Q., Chen, J. Y., et al., 2014, An matched Z-transform perfectly matched layer absorbing boundary in the numerical modeling of viscoacoustic wave equations: Chinese Journal of Geophysics (in Chinese), 57(4), 1284−1291.
[24] Zhou, B., and Greenhalgh, S. A., 1992, Seismic scalar wave equation modeling by a convolutional differentiator: Bulletin of the Seismological Society of America, 82(1), 289−303.
[1] Cheng Jing-Wang, Fan Na, Zhang You-Yuan, and Lü Xiao-Chun. Irregular surface seismic forward modeling by a body-fitted rotated–staggered-grid finite-difference method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 420-431.
[2] Ren Ying-Jun, Huang Jian-Ping, Yong Peng, Liu Meng-Li, Cui Chao, and Yang Ming-Wei. Optimized staggered-grid finite-difference operators using window functions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 253-260.
[3] Yang Jia-Jia, Luan Xi-Wu, He Bing-Shou, Fang Gang, Pan Jun, Ran Wei-Min, Jiang Tao. Extraction of amplitude-preserving angle gathers based on vector wavefield reverse-time migration[J]. APPLIED GEOPHYSICS, 2017, 14(4): 492-504.
[4] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[5] Liu Xin, Liu Yang, Ren Zhi-Ming, Cai Xiao-Hui, Li Bei, Xu Shi-Gang, Zhou Le-Kai. Hybrid absorbing boundary condition for three-dimensional elastic wave modeling[J]. APPLIED GEOPHYSICS, 2017, 14(2): 270-278.
[6] Wang Wei-Zhong, Hu Tian-Yue, Lv Xue-Mei , Qin Zhen, Li Yan-Dong, Zhang Yan. Variable-order rotated staggered-grid method for elastic-wave forward modeling[J]. APPLIED GEOPHYSICS, 2015, 12(3): 389-400.
[7] Li Lei, Chen Hao, Wang Xiu-Ming. Weighted-elastic-wave interferometric imaging of microseismic source location[J]. APPLIED GEOPHYSICS, 2015, 12(2): 221-234.
[8] Huang Jian-Ping, Qu Ying-Ming, Li Qing-Yang, Li Zhen-Chun, Li Guo-Lei, Bu Chang-Cheng. Variable-coordinate forward modeling of irregular surface based on dual-variable grid[J]. APPLIED GEOPHYSICS, 2015, 12(1): 101-110.
[9] DU Qi-Zhen, ZHANG Ming-Qiang, CHEN Xiao-Ran, GONG Xu-Fei, GUO Cheng-Feng. True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain[J]. APPLIED GEOPHYSICS, 2014, 11(4): 437-446.
[10] YANG Jia-Jia, HE Bing-Shou, ZHANG Jian-Zhong. Multicomponent seismic forward modeling of gas hydrates beneath the seafloor[J]. APPLIED GEOPHYSICS, 2014, 11(4): 418-428.
[11] ZHAO Jian-Guo, SHI Rui-Qi. Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations[J]. APPLIED GEOPHYSICS, 2013, 10(3): 323-336.
[12] CHANG Suo-Liang, LIU Yang. A truncated implicit high-order finite-difference scheme combined with boundary conditions[J]. APPLIED GEOPHYSICS, 2013, 10(1): 53-62.
[13] DUAN Yu-Ting, HU Tian-Yue, YAO Feng-Chang, ZHANG Yan. 3D elastic wave equation forward modeling based on the precise integration method[J]. APPLIED GEOPHYSICS, 2013, 10(1): 71-78.
[14] QIN Zhen, LU Ming-Hui, ZHENG Xiao-Dong, YAO Yao, ZHANG Cai, SONG Jian-Yong. The implementation of an improved NPML absorbing boundary condition in elastic wave modeling[J]. APPLIED GEOPHYSICS, 2009, 6(2): 113-121.
[15] DU Qi-Zhen, LI Bin, HOU Bo. Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme[J]. APPLIED GEOPHYSICS, 2009, 6(1): 42-49.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn