APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2017, Vol. 14 Issue (1): 40-48    DOI: 10.1007/s11770-017-0606-0
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells
Zhang Kuo1, Wu Xi-Ling1, Yan Jing-Fu1, and Cai Jia-Tie1
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
 Download: PDF (918 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordselectromagnetic holographic sensitivity field (EMHSF)   holographic physical detection field   finite-element method   holographic imaging     
Received: 2016-07-29;
Fund:

This work was supported by the National Science and Technology Major Project (No. 2011ZX05020-006).

Cite this article:   
. Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells[J]. APPLIED GEOPHYSICS, 2017, 14(1): 40-48.
 
[1] An, Z., Jin, N., Zhai, L., et al., 2014, Liquid holdup measurement in horizontal oil-water two-phase flow by using concave capacitance sensor: Measurement, 49(3), 153−163.
[2] Bie, J., Wu, X. L., and Miao, Z. W., 2011, Study on Flowing Image Reconstruction Algorithms for Oil Wells: Journal of Oil and Gas Technology (in Chinese), 33(7), 92−94.
[3] Cai, J. T., and Wu, X. L., 2013a, Experimental study on frequency property with array electromagnetic sensor: Well Logging Technology (in Chinese), 37(1), 24−27.
[4] Cai, J. T., and Wu, X. L., 2013b, Measurement data processing and application of electromagnetic sensors: Science Technology and Engineering (in Chinese): 13(12), 3432−3435.
[5] Cai, J. T., Wu, X. L., and Zhang, K., 2015, Fascicular electromagnetic field for electromagnetic tomography in multiphase flow well logging: Chinese J. Geophys. (in Chinese), 58(1), 289−297.
[6] Gao, Z., Yang, Y., Zhai, L., et al., 2016, A Four-Sector Conductance Method for Measuring and Characterizing Low-Velocity Oil-Water Two-Phase Flows: IEEE Transactions on Instrumentation & Measurement, 65(7), 1690−1697.
[7] Geselowitz, D. B., 1971, An application of electrocardiographic lead theory to impedance plethysmography: IEEE Transactions on Biomedical Engineering, 18, 38−41.
[8] Li, H. Q., and Qiao, H. T., 1996, Multiphase flow detection technology progress: China Petroleum Industry Press, Beijing.
[9] Liu, Z. B., and Wu, X. L., 2012, Flow pattern identification in oil wells by electromagnetic image logging: Petroleum Science, 9(3), 303−309.
[10] Longo, V., Testone, V., Oggiano, G., et al., 2014, Prospecting for clay minerals within volcanic successions: Application of electrical resistivity tomography to characterise bentonite deposits in northern Sardinia (Italy): Journal of Applied Geophysics, 111(12), 21−32.
[11] Radon, J., 1917, Berichte über die Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig: Mathematisch-Physische Klasse, 69, 262−277.
[12] Rücker, C., and Günther, T., 2011, The simulation of finite ERT electrodes using the complete electrode model: Geophysics, 76(4), F227−F238.
[13] Song, X., Xu, Y., and Dong, F., 2015, Sensitivity matrix construction based on ultrasound modulation for electrical resistance tomography: IEEE International Conference on Imaging Systems and Techniques, Macau, China.
[14] Sun, J. T., and Yang, W. Q., 2014, Evaluation of fringe effect of electrical resistance tomography sensor: Measurement, 53(7), 145−160.
[15] Sun, J. T., and Yang, W. Q., 2015, A dual-modality electrical tomography sensor for measurement of gas-oil-water stratified flows: Measurement, 66(4), 150−160.
[16] Suze, A. K., and Timo, H., 2015, Quantitative inverse modelling of a cylindrical object in the laboratory using ERT: An error analysis: Journal of Applied Geophysics, 114(3), 101−115.
[17] Wang, H. X, 2013, Electrical Tomography: Science Press, Beijing. (in Chinese).
[18] Wang, X. X., and Wu, X. L., 2009, Gas-water stratified flow patterns from electromagnetic tomography: Petroleum Science, 6(3), 254−258.
[19] Zhang, K., Wu, X. L., Yan, J. F., et al., 2015, Characteristics of electromagnetic holographic measurement sensitivity field for flow imaging: 2015 IEEE International Conference on Imaging Systems and Techniques, Macau, China.
[1] Kang Zheng-Ming, Ke Shi-Zhen, Li Xin, Mi Jin-Tai, Ni Wei-Ning, and Li Ming. 3D FEM simulation of responses of LWD multi-mode resistivity imaging sonde[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 401-412.
[2] Cao Xiao-Yue, Yin Chang-Chun, Zhang Bo, Huang Xin, Liu Yun-He, and Cai Jing. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 556-565.
[3] Zhou Feng, Tang Jing-Tian, Ren Zheng-Yong, Zhang Zhi-Yong, Chen Huang, Huang Xiang-Yu, and Zhong Yi-Yuan. A hybrid finite-element and integral-equation method for forward modeling of 3D controlled-source electromagnetic induction[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 536-544.
[4] Xu Kai-Jun and Sun Jie. Induced polarization in a 2.5D marine controlled-source electromagnetic field based on the adaptive finite-element method[J]. APPLIED GEOPHYSICS, 2018, 15(2): 332-341.
[5] Wang Bing, Kuo Zhang, Guo Tao, He Liu, Zhang Xiao-Liang. Acoustic reflection well logging modeling using the frequency-domain finite-element method with a hybrid PML[J]. APPLIED GEOPHYSICS, 2018, 15(1): 35-45.
[6] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
[7] Zhang Wen-Hui, Fu Li-Yun, Zhang Yan, Jin Wei-Jun. Computation of elastic properties of 3D digital cores from the Longmaxi shale[J]. APPLIED GEOPHYSICS, 2016, 13(2): 364-374.
[8] Li Wen-Ben, Zeng Zhao-Fa, Li Jing, Chen Xiong, Wang Kun, Xia Zhao. 2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data[J]. APPLIED GEOPHYSICS, 2016, 13(1): 37-47.
[9] Hu Ying-Cai, Li Tong-Lin, Fan Cui-Song, Wang Da-Yong, Li Jian-Ping. Three-dimensional tensor controlled-source electromagnetic modeling based on the vector finite-element method[J]. APPLIED GEOPHYSICS, 2015, 12(1): 35-46.
[10] YE Yi-Xin, LI Yu-Guo, DENG Ju-Zhi, LI Ze-Lin. 2.5D induced polarization forward modeling using the adaptive finite-element method[J]. APPLIED GEOPHYSICS, 2014, 11(4): 500-507.
[11] YIN Cheng-Fang, KE Shi-Zhen, XU Wei, JIANG Ming, ZHANG Lei-Jie, TAO Jie. 3D laterolog array sonde design and response simulation[J]. APPLIED GEOPHYSICS, 2014, 11(2): 223-234.
[12] HE Tao, LI Hong-Lin, ZOU Chang-Chun. 3D topographic correction of the BSR heat flow and detection of focused fluid flow[J]. APPLIED GEOPHYSICS, 2014, 11(2): 197-206.
[13] XU Wei, KE Shi-Zhen, LI An-Zong, CHEN Peng, ZHU Jun, ZHANG Wei. Response simulation and theoretical calibration of a dual-induction resistivity LWD tool[J]. APPLIED GEOPHYSICS, 2014, 11(1): 31-40.
[14] ZHAO Jian-Guo, SHI Rui-Qi. Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations[J]. APPLIED GEOPHYSICS, 2013, 10(3): 323-336.
[15] LIU De-Jun, MA Zhong-Hua, XING Xiao-Nan, LI Hui, GUO Zhi-Yong. Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM[J]. APPLIED GEOPHYSICS, 2013, 10(1): 97-108.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn