APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2012, Vol. 9 Issue (1): 9-18    DOI: 10.1007/s11770-012-0308-6
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Three-dimensional interpretation of sparse survey line MT data: Synthetic examples*
Lin Chang-Hong1,2,3, Tan Han-Dong1,2,3, Shu Qing4, Tong Tuo1,2,3, and Zhang Yu-Mei5
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China.
2. Key Laboratory of Geo-detection (China University of Geosciences), Ministry of Education, Beijing, 100083, China.
3. School of Geophysics and Information Technology,China University of Geosciences, Beijing, 100083, China.
4. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing, 100083, China.
5. No.812 Geological Party of East China Metallurgical Geology and Exploration Bureau, Tongling, 244008, China.
 Download: PDF (958 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Currently, most of MT (magnetotelluric) data are still collected on sparse survey lines and interpreted using 2D inversion methods because of the fi eld work cost, the work area environment, and so on. However, there are some 2D interpretation limitations of the MT data from 3D geoelectrical structures which always leads to wrong geological interpretations. In this paper, we used the 3D inversion method to interpret the MT sparse lines data. In model testing, the sparse lines data are the MT full information data generated from a test model and processed using the 3D conjugate gradients inversion code. The inversion results show that this inversion method is reasonable and effective. Meanwhile, we prove that for inversion results with different element parameters, the results by joint inversion of both the impedance tensor data and the tipper data are more accurate and closer to the test model.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LIN Chang-Hong
TAN Han-Dong
SHU Qing
TONG Tuo
ZHANG Yu-Mei
Key wordsMT   sparse lines   3D inversion   impedance tensor   tipper     
Received: 2010-11-19;
Fund:

This work is jointly supported by the National Hi-Tech Research and Development Program of China (863 Program) (No.2007AA09Z310), National Natural Science Foundation of China (No. 40677037, 40774029, 41004028), the Fundamental Research Funds for the Central Universities (No. 2010ZY53), and the Program for New Century Excellent Talents in University (NCET).

Cite this article:   
LIN Chang-Hong,TAN Han-Dong,SHU Qing et al. Three-dimensional interpretation of sparse survey line MT data: Synthetic examples*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 9-18.
 
[1] Avdeev, D., and Avdeeva, A., 2009, 3D magnetotelluric inversion using a limited-memory quasi-Newton optimization:
[2] Geophysics, 74(3), 45 - 57.
[3] Becken, M., Ritter, O., and Burkhardt, H., 2008, Mode separation of magnetotelluric responses in threedimensional
[4] environments: Geophys. J. Int., 172, 67 - 86.
[5] Berdichevsky, M. N., Dmitriev, V. I., Golubtsova, N. S., Mershchikova, N. A., and Pushkarev, P. Yu., 2003,
[6] Magnetovariational sounding: new possibilities: Izvestiya: Physics of the Solid Earth, 39, 701 - 727.
[7] Chen, X. B., Zhao, G. Z., and Ma, X., 2006, Research on inversion of MT3D model approximately by 1D,
[8] inversion method: Chinese Journal of Engineering Geophysics (in Chinese), 3(1), 9 - 15.
[9] Hu, W. B., Su, Z. L., and Chen, Q. L., 199 7, The characteristics and application of tipper data: Oil
[10] Geophysical Prospecting, 32(2), 202 - 213.
[11] Hu, Z. Z., Hu, X. Y., and He Z. X., 2005, Using 2-D inversion for interpretation of 3-D MT data: Oil Geophysical
[12] Prospecting (in Chinese), 40(3), 353 - 359.
[13] Hu, Z. Z., Hu, X. Y., and He Z. X., 2006, Pseudo-threedimensional magnetotelluric inversion using nonlinear
[14] conjugate gradients: Chinese J. Geophys. (in Chinese), 49(4), 1226 - 1234.
[15] Ledo, J., 2005, 2-D versus 3-D magnetotelluric data interpretation: Surveys in Geophysics, 26, 511 - 543.
[16] Ledo, J., Queralt, P., Marti, A., and Jones, A. G., 2002, Two-dimensional interpretation of three-dimensional
[17] magnetotelluric data: an example of limitation and resolution: Geophys. J. Int., 150, 127 - 139.
[18] Lin, C. H., Tan, H. D., and Tong, T., 2008, Threedimens iona l conjuga t e gr adi ent inve r s ion of
[19] magnetotelluric sounding data: Applied Geophysics, 5(4), 314 - 321.
[20] Lin, C. H., Tan, H. D., and Tong, T., 2011a, The possibility of obtaining nearby 3D resistivity structure from
[21] magnetotelluric 2D profile data using 3D inversion: Chinese J. Geophys. (in Chinese), 54(1), 245 - 256.
[22] Lin, C. H., Tan, H. D., and Tong, T., 2011b, Three-dimensional conjugate gradient inversion of magnetotelluric impedance tensor data: Journal of Earth Science, 22(3), 386 - 395.
[23] Lin, C. H., Tan, H. D., and Tong, T., 2011c, Three-dimensional conjugate gradient inversion of magnetotelluric full
[24] information data: Applied Geophysics, 8(1), 1 - 10.
[25] Mackie, R. L., and Madden, T. R., 1993, Three-dimensional magnetotelluric inversion using conjugate gradients:
[26] Geophys. J. Int., 115, 215 - 229.
[27] Newman, G. A., and Alumbaugh, D. L., 2000, Threedimensional magnetotelluric inversion using non-linear
[28] conjugate gradients: Geophys. J. Int., 140, 410 - 424.
[29] Siripunvaraporn, W., Egbert, G., Lenbury, Y., and Uyeshima, M., 2005, Three-dimensional magnetotelluric
[30] inversion: data-space method: Physics of The Earth and Planetary Interiors, 150(1-3), 3 - 14.
[31] Siripunvaraporn, W., and Egbert, G., 2009, Vertical magnetic field transfer function inversion and parallel
[32] implementation: Physics of the Earth and Planetary Interiors, 173, 317 - 329.
[33] Tan, H. D., Yu, Q. F., Booker, J., and Wei, W. B., 2003a, Magnetotelluric three-dimensional modeling using
[34] the staggered-grid finite difference method: Chinese J. Geophys. (in Chinese), 46(5), 705 - 711.
[35] Tan, H. D., Yu, Q. F., Booker, J., and Wei, W. B., 2003b, Three-dimensional rapid relaxation inversion for the
[36] magnetotelluric method: Chinese J. Geophys. (in Chinese), 46(6), 850 - 855.
[37] Wanamaker, P. E., Hohmann, G. W., and Ward, S. H., 1984, Magnetotelluric responses of three-dimensional bodies in
[38] layered earth: Geophysics, 49, 1517 - 1533.
[1] Cao Xiao-Yue, Yin Chang-Chun, Zhang Bo, Huang Xin, Liu Yun-He, and Cai Jing. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 556-565.
[2] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[3] Wang Jun-Lu, Lin Pin-Rong, Wang Meng, Li Dang, Li Jian-Hua. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. APPLIED GEOPHYSICS, 2017, 14(2): 291-300.
[4] Wang Kun-Peng, Tan Han-Dong, Wang Tao. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory[J]. APPLIED GEOPHYSICS, 2017, 14(2): 279-290.
[5] Cao Meng, Tan Han-Dong, Wang Kun-Peng. 3D LBFGS inversion of controlled source extremely low frequency electromagnetic data[J]. APPLIED GEOPHYSICS, 2016, 13(4): 689-700.
[6] Liu Yun-He, Yin Chang-Chun, Ren Xiu-Yan, Qiu Chang-Kai. 3D parallel inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2016, 13(4): 701-711.
[7] Wang Tao, Tan Han-Dong, Li Zhi-Qiang, Wang Kun-Peng, Hu Zhi-Ming, Zhang Xing-Dong. 3D finite-difference modeling algorithm and anomaly features of ZTEM[J]. APPLIED GEOPHYSICS, 2016, 13(3): 553-560.
[8] Li Jun-Jie, Yan Jia-Bin, Huang Xiang-Yu. Precision of meshfree methods and application to forward modeling of two-dimensional electromagnetic sources[J]. APPLIED GEOPHYSICS, 2015, 12(4): 503-515.
[9] Hu Ying-Cai, Li Tong-Lin, Fan Cui-Song, Wang Da-Yong, Li Jian-Ping. Three-dimensional tensor controlled-source electromagnetic modeling based on the vector finite-element method[J]. APPLIED GEOPHYSICS, 2015, 12(1): 35-46.
[10] WANG Zhu-Wen, XU Shi, LIU Yin-Ping, LIU Jing-Hua. Extrapolated Tikhonov method and inversion of 3D density images of gravity data[J]. APPLIED GEOPHYSICS, 2014, 11(2): 139-148.
[11] Shireesha M. and Harinarayana T.. Processing of magnetotelluric data - a comparative study with 4 and 6 element impedance tensor elements[J]. APPLIED GEOPHYSICS, 2011, 8(4): 285-292.
[12] LIN Chang-Hong, TAN Han-Dong, TONG Tuo. Three-dimensional conjugate gradient inversion of magnetotelluric full information data[J]. APPLIED GEOPHYSICS, 2011, 8(1): 1-10.
[13] LIN Chang-Hong, TAN Han-Dong, TONG Tuo. Parallel rapid relaxation inversion of 3D magnetotelluric data[J]. APPLIED GEOPHYSICS, 2009, 6(1): 77-83.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn