APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2016, Vol. 13 Issue (3): 553-560    DOI: 10.1007/s11770-016-0566-9
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
3D finite-difference modeling algorithm and anomaly features of ZTEM
Wang Tao1, Tan Han-Dong1, Li Zhi-Qiang1, Wang Kun-Peng1, Hu Zhi-Ming1, and Zhang Xing-Dong1
1. Key Laboratory of Geo-detection Ministry of Education and School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China.
 Download: PDF (813 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The Z-Axis tipper electromagnetic (ZTEM) technique is based on a frequency-domain airborne electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell’s equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsZ-Axis tipper electromagnetic   finite-difference method   tipper   three-dimensional forward modeling   airborne electromagnetic     
Received: 2015-06-19;
Fund:

This work was supported by the Natural Science Foundation of China (No. 41374078) and Geological Survey Projects of Ministry of Land and Resources of China (No. 12120113086100 and 12120113101300).

Cite this article:   
. 3D finite-difference modeling algorithm and anomaly features of ZTEM[J]. APPLIED GEOPHYSICS, 2016, 13(3): 553-560.
 
[1] Chen, Q. L., Hu, W. B., Li, J. M., and Yan, L. J., 2007, Characteristics of tipper response of buried sphere: Journal of Oil and Gas Technology (in Chinese), 29(3), 75−78.
[2] Farquharson, C. G., Oldenburg, D. W., and Haber, E., 2002, An algorithm for the three-dimensional inversion of magnetotelluric data: In Proceedings of the 72nd Annual International Meeting, SEG, Expanded Abstracts, 649−652.
[3] Holtham, E., and Oldenburg, D. W., 2010a, Three-dimensional inversion of ZTEM data: Geophysical Journal International, 182, 168−182.
[4] Holtham, E., and Oldenburg, D. W., 2010b, Three-dimensional inversion of MT and ZTEM data: 80th Annual International Meeting, SEG, Expanded Abstracts, 655−659.
[5] Hu, W. B., Su, Z. L., Chen, Q. L., Yan, L. J., and Zheng, R. S., 1997, Character of tipper data and application: Oil Geophysical Prospecting (in Chinese), 32(2), 202−213.
[6] Labson, V. F., Becker, A., Morrison, H. F., and Conti, U., 1985, Geophysical exploration with audio-frequency natural magnetic fields: Geophysics, 50(4), 656−664.
[7] Lin, C. H., Tan, H. D., and Tong, T., 2008, Three dimensional conjugate gradient inversion of magnetotelluric sounding data, Applied Geophysics, 5(4), 314−321.
[8] Lin, C. H., Tan, H. D., and Tong, T., 2011a, Three-dimensional conjugate gradient inversion of tipper data: Chinese Journal of Geophysics, 54(4), 1106−1113.
[9] Lin, C. H., Tan, H. D., and Tong, T., 2011b, Three-dimensional conjugate gradient inversion of magnetotelluric full information data: Applied Geophysics, 8(1), 1−10.
[10] Lo, B., and Zang, M., 2008, Numerical modeling of ZTEM (airborne AFMAG) responses to guide exploration strategies: 78th Annual International Meeting, SEG, Expanded Abstracts, 27(1), 1098−1102.
[11] Mackie, R. L., Madden, T. R., and Wannamaker, P. E., 1993, Three-dimensional magnetotelluric modeling using difference equations-Theory and comparisons to integral equation solutions: Geophysics, 58(2), 215−226
[12] Mackie, R. L., Smith, J. T., and Madden, T. R., 1994, Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example: Radio Science, 29(4), 923−935.
[13] Sattel, D., and Witherly, K., 2012, The modeling of ZTEM data with 2D and 3D algorithms: 82th Ann International Meeting, SEG, Expanded Abstracts, 1−5.
[14] Tan, H. D., Wei, W. B., Deng, M, and Jin, S., 2004, General use formula in MT tensor impedance: Oil Geophysical Prospecting (in Chinese), 39(1), 114−116.
[15] Tan, H. D., Yu, Q. F., Booker J., and Wei, W. B., 2003, Magnetotelluric three-dimensional modeling using the staggered-grid finite difference method: Chinese Journal of Geophysics (in Chinese), 46(5), 705−711.
[16] Tong, X. Z., Liu, J. X., Liu, Y., Gan, J. X., and Zhang, L.W., 2011, Calculating tipper response in two-dimensional magnetotelluric using finite element method. Journal of Jilin University (Earth Science Edition) (in Chinese), 42(Sup.1), 349−354.
[17] Vozoff, K., 1972, The magnetotelluric method in the exploration of sedimentary basins: Geophysics, 37(1), 98−141.
[18] Wang, W. P., and Wang, S. T., 2011, Frequency-domain aero-electromagnetic method and its application: Geology Press, Beijing, 2−6.
[19] Ward, S. H., 1959, AFMAG-airborne and ground: Geophysics, 24(4), 761−789.
[20] Yu, N., Hu, X. Y., Wang, X. B., and Li, J., 2014, Two-dimensional magnetotelluric tipper and apparent tipper: simulation and application: Journal of Southwest Jiaotong University (in Chinese), 49(2), 268−275.
[1] Li Kun, Chen Long-Wei, Chen Qing-Rui, Dai Shi-Kun, Zhang Qian-Jiang, Zhao Dong-Dong, and Ling Jia-Xuan. Fast 3D forward modeling of the magnetic field and gradient tensor on an undulated surface[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 500-512.
[2] Gao Zong-Hui, Yin Chang-Chun, Qi Yan-Fu, Zhang Bo, Ren Xiu-Yan, and Lu Yong-Chao. Transdimensional Bayesian inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2018, 15(2): 318-331.
[3] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[4] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
[5] Huang Xin, Yin Chang-Chun, Cao Xiao-Yue, Liu Yun-He, Zhang Bo, Cai Jing. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method[J]. APPLIED GEOPHYSICS, 2017, 14(3): 419-430.
[6] Wang Jun-Lu, Lin Pin-Rong, Wang Meng, Li Dang, Li Jian-Hua. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. APPLIED GEOPHYSICS, 2017, 14(2): 291-300.
[7] Chen Hui, Deng Ju-Zhi Yin Min, Yin Chang-Chun, Tang Wen-Wu. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method[J]. APPLIED GEOPHYSICS, 2017, 14(1): 154-164.
[8] Liu Yun-He, Yin Chang-Chun, Ren Xiu-Yan, Qiu Chang-Kai. 3D parallel inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2016, 13(4): 701-711.
[9] Li Wen-Ben, Zeng Zhao-Fa, Li Jing, Chen Xiong, Wang Kun, Xia Zhao. 2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data[J]. APPLIED GEOPHYSICS, 2016, 13(1): 37-47.
[10] ZHU Kai-Guang, MA Ming-Yao, CHE Hong-Wei, YANG 二Wei, JI Yan-Ju, YU Sheng-Bao, LIN Jun. PC-based artifi cial neural network inversion for airborne time-domain electromagnetic data*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 1-8.
[11] LIN Chang-Hong, TAN Han-Dong, SHU Qing, TONG Tuo, ZHANG Yu-Mei. Three-dimensional interpretation of sparse survey line MT data: Synthetic examples*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 9-18.
[12] LIN Chang-Hong, TAN Han-Dong, TONG Tuo. Three-dimensional conjugate gradient inversion of magnetotelluric full information data[J]. APPLIED GEOPHYSICS, 2011, 8(1): 1-10.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn