Computation of elastic properties of 3D digital cores from the Longmaxi shale
Zhang Wen-Hui1,2, Fu Li-Yun2, Zhang Yan2, and Jin Wei-Jun2
1. University of the Chinese Academy of Sciences, Beijing 100049, China.
2. Key Laboratory of Petroleum Resource Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
Abstract The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.
This work was supported by the Chinese Academy of Sciences Strategic Leading Science and Technology projects (Grant No. XDB10010400) and the China Postdoctoral Science Foundation (Grant No. 2015M570142).
Cite this article:
. Computation of elastic properties of 3D digital cores from the Longmaxi shale[J]. APPLIED GEOPHYSICS, 2016, 13(2): 364-374.
[1]
Altowairqi, Y., Rezaee, R., Urosevic, M., et al., 2013, Measuring Ultrasonic Characterization to Determine the Impact of Toc and the Stress Field on Shale Gas Anisotropy: APPEA Journal, 53, 245-254.
[2]
Andrä, H., Combaret, N., Dvorkin, N., et al., 2013a, Digital rock physics benchmarks-Part Ι: Imaging and segmentation Computers & Geosciences, 50, 25-32.
[3]
Andrä, H., Combaret, N., and Dvorkin, N., 2013b, Digital rock physics benchmarks-Part Π: Computing effective properties: Computers & Geosciences, 50, 33-43.
[4]
Arns, C. H., Knackstedt, M. A, Garboczi, E. J. et al., 2002, Computation of linear elastic properties from microtomographic images Methodology and agreement between theory and experiment: Geophysics, 67(5), 1396-1405.
[5]
Bai, B. J., Sun Y. P., and Liu, L. B., 2016, Petrophysical properties characterization of Ordovician Utica gas shale in Quebec, Canada: Petrol. Explor. Develop., 43(1), 74-81.
[6]
Berge, P. A., Berryman, J. G., and Bonner, B. P., 1993, Influence of microstructure on rock elastic properties: Geophys. Res. Lett., 20, 2619-2622.
[7]
Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media: J. Acoustic Soc. Am., 69, 416-424.
[8]
Ceron, M. R., Martinez, J. F., Diaz, E., et al., 2013, Digital rock physics for reservoir characterization: Thirteenth International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil.
[9]
Chen, S. B., Zhu, Y. M., Wang, H. Y., et al., 2011, Shale Gas Reservoir Characterization: A Typical Case in the Southern Sichuan Basin of China: Energy, 36(11), 6609-6616.
[10]
Chen, W. L., Zhou, W., Luo, P., et al., 2013, Analysis of the Shale Gas Reservoir in the Lower Silurian Longmaxi Formation, Changxin 1 Well, Southeast Sichuan Basin, China: Acta Petrologica Sinica, 29(3), 1073-1086.
[11]
Chen, Y., Huang, T. F., and Liu, E. R., 2009, Rock Physics: University of Science and Technology of China Press, Hefei, 83-85.
Curtis, M. E., Ambrose, R. J., and Sondergeld, C. H., 2010, Structural characterization of gas shales on the micro-and nano-scales: Canadian Unconventional Resources and International Petroleum Conference, Society of Petroleum Engineers.
[14]
Dewhurst, D. N., Aplin, A. C., Sarda, J. P., et al., 1998, Compaction-driven evolution of porosity and permeability in natural mudstones: an experimental study: J. Geophys. Res. Solid Earth 103/B1, 651-661.
[15]
Dewhurst, D. N., and Hennig, A., 2003, Geomechanical properties related to top seal leakage in the Carnarvon Basin, Northwest Shelf, Australia: Pet. Geosci., 9, 255-263.
[16]
Dvorkin, J., Walls, J., Tutuncu, A., et al., 2003, Rock property determination using digital rock physics: 73rd Ann. Intertan. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1660-1663.
[17]
Fu, L. Y., 2001, Logging analysis of pore pressure in the Northern Carnarvon Basin: APCRC Confidential Report Number 01-005, CSIRO Petroleum.
[18]
Fu, L. Y., 2002, Joint Lithologic Inversion, in Wong, P., Aminzadeh, F., and Nikravesh, M., Ed., Soft Computing for Reservoir Characterization and Modeling: Pringer-Verlag Publishers, 511-530.
[19]
Fu, L. Y., Wang, X., Hennig, A., and Urosevic, M., 2001, Acoustic analysis of overpressure: from modeling to wireline observation: 15th Ann. Internat. Mtg., Australia Soc. Expl. Geophys., Expanded Abstracts, 243-247.
[20]
Garboczi, E. J., and Day, A. R., 1995, An algorithm for calculating the effective linear elastic properties of heterogeneous materials: Three dimensional results for composites with equal phase poisson ratios: J. Mech. Phys. Solids, 43, 1349-1362.
[21]
Han, D. H., 1986, Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments: Ph.D. thesis, Stanford Univ.
[22]
Huang, J. L., Ju, C. N., Li, J. Z., et al., 2012, Shale gas accumulation conditions and favorable zones of Silurian Longmaxi Formation in south Sichuan Basin,China: Journal of China Coal Society, 37(5), 782-787.
[23]
Josh, M., Esteban, L., DellePiane, C., et al., 2012, Laboratory characterisation of shale properties: Journal of Petroleum Science and Engineering, 88-89, 107-124.
[24]
Liu X. F., Sun, J. M., and Wang, H. T., 2009, Numerical simulation of rock electrical properties based on digital cores: Applied Geophysics, 6(1), 1-7.
[25]
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009, Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale: J Sediment Res, 79(12), 848-861.
[26]
Loucks, R. G., and Ruppel, S. C., 2007, Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas: AAPG Bulletin, 91(4), 579-601.
[27]
Madonna, C., Quintal, B., Frehner, M., et al, 2013, Synchrotron-based X-ray tomographic microscopy for rock physics investigations: Geophysics, 78(1), 53-64.
[28]
Mansfield, M. L., Douglas, J. F., and Garboczi, E. J., 2001, Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects: Physical Review. E, 64(6), 061401.
[29]
Milton, G.W., 1981, Bounds on the electromagnetic, elastic, and other properties of two-component composites: Phys. Rev. Lett., 46, 542-545.
[30]
Raymer, L. L., Hunt, E. R., and Gardner, J. S., 1980, An improved sonic transit time to porosity transform: 21st Ann. Logging Symp., SPWLA, paper P.
[31]
Roberts, A. P., and Garboczi, E. J., 2000, Elastic properties of model porous ceramics: J. Amer. Ceramic Soc., 83, 3041-3048.
[32]
Saenger, E. H., Krüger, O. S., and Shapiro, S. A., 2004, Numerical considerations of fluid effects on wave propagation: Influence of the tortuositya: Geophysical Research Letters, L21613.
[33]
Voigt, W., 1910, Lehrbuch der Kristallphysik, Teubner, Leipzig 954-964 (Reprint 1928).
[34]
Wang, K. W., and Li, N., 2008, Numerical simulation of rock pore-throat structure effects on NMR T2 distribution: Applied Geophysics, 5(2), 86-91.
[35]
Wang, L., Chen, Y. Y., and Liu, Y. X., 2014, Shale Porous Structural Characteristics of Longmaxi Formation in Pengshui Area of Southeast Sichuan Basin: China Petroleum Exploration, 19(5), 80-87.
[36]
Wang, S. F., Dong, D. Z., Wang, Y. M. et al., 2015, A comparative study of the geological feature of marine shale gas between China and the united states: Natural Gas Geoscience, 26(9), 1666−1678.
[37]
Wang, Y. D., Yang, Y. S., Xiao, T. Q., et al, 2013, Synchrotron-Based Data-Constrained Modeling Analysis of Microscopic Mineral Distributions in Limestone: International Journal of Geosciences, 4(2), 344-351.
[38]
Wang, Z. G., 2015, Breakthrough of Fuling shale gas exploration and development and its inspiration: Oil and Gas Geology (in Chinese), 36(1), 1−6.
[39]
Wen, L., Hu, S. Y., and Tian, H. Q., 2001, A study on hydrocarbon source rock of Cambrian in Yangtze area, China: Northwestern Geology (in Chinese), 34, 67-74.
[40]
Wo, Y. Y., Zhou, Y., and Xiao, K. H., 2007, The burial history and models for hydrocarbon generation and evolution in the marine strata in southern China: Sedimentary Geology and Tethyan Geology (in Chinese), 27, 94-100.
[41]
Wyllie, M., Gregory, A., and Gardner, G., 1956, Elastic wave velocities in heterogeneous and porous media: Geophysics, 21, 41-70.
[42]
Zhang, J. C., Jiang, S. L., Tang, X., et al., 2009, Accumulation types and resources characteristics of shale gas in China: Natural Gas Industry (in Chinese), 29, 1-6.
[43]
Zhang J. Y., and Sun J. M., 2012, Study on rock elastic properties by application of digital core and effective medium model: Journal of Oil and Gas Technology (in Chinese), 34(2), 65-70.