APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2016, Vol. 13 Issue (2): 332-342    DOI: 10.1007/s11770-016-0536-2
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Dispersion function of Rayleigh waves in porous layered half-space system
Yan Shou-Guo1, Xie Fu-Li2, Li Chang-Zheng3, and Zhang Bi-Xing1
1. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
2. GoerTek Inc., Beijing 100190, China.
3. Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China.
 Download: PDF (796 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Rayleigh wave exploration is based on an elastic layered half-space model. If practical formations contain porous layers, these layers need to be simplified as an elastic medium. We studied the effects of this simplification on the results of Rayleigh wave exploration. Using a half-space model with coexisting porous and elastic layers, we derived the dispersion functions of Rayleigh waves in a porous layered half-space system with porous layers at different depths, and the problem of transferring variables to matrices of different orders is solved. To solve the significant digit overflow in the multiplication of transfer matrices, we propose a simple, effective method. Results suggest that dispersion curves differ in a low-frequency region when a porous layer is at the surface; otherwise, the difference is small.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordslayered media   porous media   Rayleigh waves   matrix optimization     
Received: 2015-09-25;
Fund:

This work is supported by National Sciences Foundation (No.11174321, 11174322, and 11574343).

Cite this article:   
. Dispersion function of Rayleigh waves in porous layered half-space system[J]. APPLIED GEOPHYSICS, 2016, 13(2): 332-342.
 
[1] Abo-Zena, A., 1979, Dispersion function computations for unlimited frequency values: Geophys. J. R. Astr. Soc., 58(1), 91−105.
[2] Ben-Menahem, A., and Singh, S. J., 1968, Multipolar elastic fields in a layered half-space: Bull. Seism. Soc. Am., 58(5), 1519−1572.
[3] Chai, H. Y., Zhang, D. J., Lu, H. L., et al., 2015, Behavior of Rayleigh waves in layered saturated porous media using thin-layer method: Chinese Journal of Geotechnical Engineering, 37(6), 1132−1141.
[4] Lu, L. Y., and Zhang, B. X., 2006, Experimental analysis of multimode guided waves in stratified media: Applied Physics Letters, 88(1), 014101-014101-3.
[5] Luo, Y. H., Xia, J. H., and Liu, J. P., 2007, Joint inversion of high-frequency surface waves with fundamental and higher modes: J. of Applied Physics, 62(4), 375−384.
[6] Luo, Y. H., Xia, J. H., Miller R. D., et al., 2008, Rayleigh-Wave Dispersive Energy Imaging Using a High-Resolution Linear Radon Transform: Pure appl. geophys., 165(2008), 903-922.
[7] Menke, W., 1979, Comment on ‘Dispersion function computation for unlimited frequency values’ by Anas Abo-Zena: Geophys. J. R. Astr. Soc., 59(2), 315−323.
[8] Nelder, J. A., and Mead, R., 1965, Simplex method for function minimization: Computer Journal, 7, 308−313.
[9] O’Neill, A., and Matsuoka, T., 2005, Dominant higher surface modes and possible inversion pitfalls: Journal of Environmental and Engineering Geophysics, 10(2), 185−201.
[10] Parra, J. O., and Xu, P. C., 1994, Dispersion and attenuation of acoustic guided waves in layered fluid-filled porous media: J. Acoust. Soc. Am., 95(1), 91−98.
[11] Tajuddin, M., and Ahmed, S., 1991, Dynamic interaction of a poroelastic layer and a half-space: J. Acoust. Soc. Am., 89(3), 1169−1175.
[12] Wu, X. Y., Li, Y. M., and Wang, K. X., 1993, Matrix algorithm and numerical calculation of seismic wave field in porous multilayer medium: Oil Geophysical Prospecting (in Chinese), 28(6), 694−704, 742.
[13] Xia, T. D., Yan, K. Z., and Sun M. Y., 2004, Propagation of Rayleigh wave in saturated soil layer: Journal of Hydraulic Engineering (in Chinese), (11), 1−5.
[14] Yaroslav, T.,andDavid, L. J., 2003, Capillary forces in the acoustics of patchy-saturated porous media: J. Acoust. Soc. Am.,114(5), 2596−2606.
[15] Zhang, B. X., Lu, L. Y., and Wang, C. H., 2004, Inversion of Rayleigh Wave in a Stratified Half Space: Chin. Phys. Lett., 21(4), 682−685.
[16] Zhang, B. X., Wei, X., Yu, M., et al., 1998, Study of energy distribution of guide waves in multi-layered media: J. Acoust. Soc. Am., 103(1), 125−135.
[17] Zhang, B. X., Yu, M., Lan, C. Q., et. al., 1996, Elastic wave and excitation mechanism of surface waves in multi-layered media: J. Acoust. Soc. Am., 100(6), 3527−3538.
[18] Zhang, Y., Xu, Y. X., Xia, J. H., et al., 2015, Characteristics and application of surface wave propagation in fluid-filled porous media: Chinese J. Geophys., 58(8), 2759−2778.
[19] Zhao, H. B., Chen, S. M., Li, L. L., et al., 2012, Influence of fluid saturation on Rayleigh wave propagation: Scientia Sinica (Physica Mechanica & Astronomica) (in Chinese), 42(2), 148−155.
[20] Zhou, T. F., Peng, G. X., Hu, T. Y., et al., 2014, Rayleigh wave nonlinear inversion based on the Firefly algorithm: Applied Geophysics, 11(2), 167−178.
[21] Zhou, X. M., and Xia, T. D., 2007, Characteristics of Rayleigh waves in half-space of partially saturated soil: Chinese Journal of Geotechnical Engineering, 29(5), 750-754.
[1] Li Chang-Zheng, Yang Yong, Wang Rui, Yan Xiao-Fei. Acoustic parameters inversion and sediment properties in the Yellow River reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(1): 78-90.
[2] Zhang Hui-Xing, He Bing-Shou. Propagation and attenuation of P-waves in patchy saturated porous media[J]. APPLIED GEOPHYSICS, 2015, 12(3): 401-408.
[3] ZHOU Teng-Fei, PENG Geng-Xin, HU Tian-Yue, DUAN Wen-Sheng, YAO Feng-Chang, LIU Yi-Mou. Rayleigh wave nonlinear inversion based on the Firefly algorithm[J]. APPLIED GEOPHYSICS, 2014, 11(2): 167-178.
[4] TIAN Ying-Chun, MA Jian-Wei, YANG Hui-Zhu. Wavefield simulation in porous media saturated with two immiscible fluids[J]. APPLIED GEOPHYSICS, 2010, 7(1): 57-65.
[5] TIAN Ying-Chun, MA Jian-Wei, YANG Hui-Zhu. Wavefield simulation in porous media saturated with two immiscible fluids[J]. APPLIED GEOPHYSICS, 2010, 6(1): 57-65.
[6] NIU Bin-Hua, SUN Chun-Yan, YAN Guo-Ying, YANG Wei, LIU Chang. Linear numerical calculation method for obtaining critical point, pore fluid, and framework parameters of gas-bearing media[J]. APPLIED GEOPHYSICS, 2009, 6(4): 319-326.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn