Self-adapting extraction of matrix mineral bulk modulus and verifi cation of fl uid substitution
Lin Kai1, Xiong Xiao-Jun1, Yang Xiao2, He Zhen-Hua1, Cao Jun-Xing1, Zhang Xi-Hua1, and Wang Ping2
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China.
2. CNPC Geophysical Chuanqing Drilling Engineering Co., Ltd. Exploration Company, Chengdu 610213, China.
Abstract Gassmann’s equations are commonly used for predicting seismic wave velocity in rock physics research. However the input matrix mineral bulk modulus parameters are not accurate, which greatly infl uences the prediction reliability. In this paper, combining the Russell fl uid factor with the Gassman-Biot-Geertsma equation and introducing the dry-rock Poisson’s ratio, we propose an effective matrix mineral bulk modulus extraction method. This method can adaptively invert the equivalent matrix mineral bulk modulus to apply the Gassmann equation to fluid substitution of complex carbonate reservoirs and increase the fl uid prediction reliability. The verifi cation of the actual material fl uid substitution also shows that this method is reliable, effi cient, and adaptable.
National Natural Science Foundation of China (Grant No. 40904035).
Cite this article:
LIN Kai,XIONG Xiao-Jun,YANG Xiao et al. Self-adapting extraction of matrix mineral bulk modulus and verifi cation of fl uid substitution[J]. APPLIED GEOPHYSICS, 2011, 8(2): 110-116.
[1]
Adam, L., Batzle, M., and Brevik, I.,2006,Gassmann’s fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies: Geophysics, 71(6), 173-183.
[2]
Biot, M. A., 1941, General theory of three dimensional consolidation: Journal of Applied Physics, 12(2), 155-164.
[3]
Gassmann, F., 1951, Uber die elastizitat poroser medien: Vier Der Natur Gesellschaft, 96, 1-23.
[4]
Gregory, A. R., 1976, Fluid saturation effects on dynamic elastic properties of sedimentary rock: Geophysics, 41(5), 895-921
[5]
Hashin, Z., and Shtrikman, S., 1963, A variational approach to the theory of the elastic behaviour of multiphase materials: Mech. Phys. Solids, 11, 127-140.
[6]
Hill, R., 1952, The elastic behavior of a crystalline aggregate: Proc. Physical Soc., London, 65(A), 349-345.
[7]
Krief, M., Garat,J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic): The log Analyst, 31, 355-369.
[8]
Mavko, G., Mukerji, T., and Dvorkin, J., 2003, The Rock physics handbook: Tools for seismic analysis in porous media: Cambridge University Press, London, 260-263.
[9]
Graul,Mike, G., 1987,Seismic Lithology: Petroleum Industry Press, Beijing, 1-50.
[10]
Nur, A., 1992, Critical porosity and the seismic velocities in rocks: EOS, Transactions, American Geophysical Union, 73, 43-66.
[11]
Pride, S. R., Gangi, A.F., and Morgan, F. D., 1992, Deriving the equations of motion for porous isotropic media: Journal of the Acoustical Society of America, 92(6), 3278-3290.
[12]
Ruiz, F., and Dvorkin, J., 2010, Predicting elasticity in nonclastic rocks with a differential effective medium model: Geophysics, 75(1), 41-53.
[13]
Russell, B. H., Hedlin, K., Hilterman, F. J., and Lines, L, R., 2003, Fluid-property discrimination with AVO: A biot-Gas smann perspective: Geophysics, 68(1), 29-39
[14]
Smith, T. M., Sondergeld, C. H., and Rai, C. S., 2003, Gassmann ?uid substitutions: A tutorial: Geophysics, 68(2), 430-440.
[15]
Yin, B. J., Zeng, H., and Yang, Z. Y., 1995, Theory and Practice of AVO technology: Petroleum Industry Press, Beijing, 36-37.
[16]
Zhang, J. Q., Qu, S. L., Sun, J. G., Dong, N., and Yu, W. Q., 2010, A fluid substitution realization method in carbonate reservoir: Oil Geophysical Prospecting, 45(3), 406-409.