APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2011, Vol. 8 Issue (1): 48-59    DOI: 10.1007/s11770-011-0273-5
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Influence of inaccurate wavelet phase estimation on seismic inversion
Yuan San-Yi1,2 and Wang Shang-Xu1,2
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
2. CNPC Key Lab of Geophysical Exploration, China University of Petroleum (Beijing), Beijing 102249, China
 Download: PDF (2231 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets,are used to implement linear least-squares inversion. During inversion, except for the wavelet phase, all other factors affecting inversion results are not taken into account. The inversion results of a sparse reflectivity model (or blocky impedance model) show that: (1) although the synthetic data using inversion results matches well with the original seismic data, the inverted refl ectivity and acoustic impedance are different from that of the real model. (2) the inversion result reliability is dependent on the estimated wavelet Z transform root distribution. When the estimated wavelet Z transform roots only differ from that of the real wavelet near the unit circle, the inverted reflectivity and impedance are usually consistent with the real model;(3) although the synthetic data matches well with the original data and the Cauchy norm (or modifi ed Cauchy norm) with a constant damping parameter has been optimized, the inverted results are still greatly different from the real model. Finally, we suggest using the L1 norm,Kurtosis, variation, Cauchy norm with adaptive damping parameter or/and modifi ed Cauchy norm with adaptive damping parameter as evaluation criteria to reduce the bad influence of inaccurate wavelet phase estimation and obtain good results in theory.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YUAN San-Yi
WANG Shang-Xu
Key wordsPhase   seismic wavelet   inversion   evaluation criterion   root     
Received: 2010-01-17;
Fund:

This research was financially supported by National Key Basic Research Development Program (Grant No. 2007CB209600) and National Major Science and Technology Program (Grant No. 2008ZX05010-002).

Cite this article:   
YUAN San-Yi,WANG Shang-Xu. Influence of inaccurate wavelet phase estimation on seismic inversion[J]. APPLIED GEOPHYSICS, 2011, 8(1): 48-59.
 
[1] Cooke, D. A., and Schneider, W. A., 1983, Generalized linear inversion of reflection seismic data: Geophysics, 48, 665 - 676.
[2] Lu, W. K., and Liu, D. Q., 2007, Frequency recovery of bandlimited seismic data based on sparse spike train deconvolution: 77th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1977 - 1980.
[3] Oldenburg, D. W., Scheuer, T., and Levy, S., 1983, Recovery of the acoustic impedance from reflection seismograms: Geophysics, 48, 1318 - 1337.
[4] Puryear, C. I., and Castagna, J. P., 2008, Layer-thickness determination and stratigraphic interpretation using spectral inversion: Theory and application: Geophysics, 73, 37 - 48.
[5] Sacchi, M. D., 1997, Reweighting strategies in seismic deconvolution: Geophysical Journal International, 129, 651 - 656.
[6] Velis, D. R., 2008, Stochastic sparse-spike deconvolution: Geophysics, 73(1), R1 - R9.
[7] Walker, C., and Ulrych, T. J., 1983, Autoregressive modeling of the acoustic impedance: Geophysics, 48(10), 1338 - 1350.
[8] Wiggins, R., 1985, Entropy guided deconvolution: Geophysics, 50(12), 2720 - 2726.
[9] Yilmaz, O., 2001, Seismic data analysis: processing, inversion, and interpretation of seismic data (Volume I): Society of Exploration Geophysicists, 162 - 211.
[10] Yuan, S. Y., and Wang, S. X., 2010, Noise attenuation without spatial assumptions about seismic coherent events: 80th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 3524 - 3528.
[11] Yuan, S. Y., Wang, S. X., and Tian, N., 2009, Swarm intelligence optimization and its application in geophysical data inversion: Applied Geophysics, 6(2), 166 - 174.
[12] 张繁昌, 刘杰, 印兴耀等, 2008, 修正柯西约束地震盲反褶积方法: 石油地球物理勘探, 43(4), 391 - 396.
[1] Hou Zhen-Long, Huang Da-Nian, Wang En-De, and Cheng Hao. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. APPLIED GEOPHYSICS, 2019, 16(2): 141-153.
[2] Xie Wei, Wang Yan-Chun, Liu Xue-Qing, Bi Chen-Chen, Zhang Feng-Qi, Fang Yuan, and Tahir Azeem. Nonlinear joint PP–PS AVO inversion based on improved Bayesian inference and LSSVM*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 70-82.
[3] Wang En-Jiang, Liu Yang, Ji Yu-Xin, Chen Tian-Sheng, and Liu Tao. Q full-waveform inversion based on the viscoacoustic equation*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 83-98.
[4] Zhang Zhen-Bo, Xuan Yi-Hua, and Deng Yong. Simultaneous prestack inversion of variable-depth streamer seismic data*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 99-108.
[5] Meng Zhao-Hai, Xu Xue-Chun, and Huang Da-Nian. Three-dimensional gravity inversion based on sparse recovery iteration using approximate zero norm[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 524-535.
[6] Yang Hai-Yan, Li Feng-Ping, Chen Shen-En, Yue Jian-Hua, Guo Fu-Sheng, Chen Xiao, and Zhang Hua. An inversion of transient electromagnetic data from a conical source[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 545-555.
[7] Cao Xiao-Yue, Yin Chang-Chun, Zhang Bo, Huang Xin, Liu Yun-He, and Cai Jing. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 556-565.
[8] Liu Wei, Wang Yan-Chun, Li Jing-Ye, Liu Xue-Qing, and Xie Wei. Prestack AVA joint inversion of PP and PS waves using the vectorized reflectivity method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 448-465.
[9] Ma Qi-Qi and Sun Zan-Dong. Elastic modulus extraction based on generalized pre-stack PP–PS joint linear inversion[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 466-480.
[10] Shi Cai-Wang and He Bing-Shou. Multiscale full-waveform inversion based on shot subsampling[J]. APPLIED GEOPHYSICS, 2018, 15(2): 261-270.
[11] Gao Zong-Hui, Yin Chang-Chun, Qi Yan-Fu, Zhang Bo, Ren Xiu-Yan, and Lu Yong-Chao. Transdimensional Bayesian inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2018, 15(2): 318-331.
[12] Sun Si-Yuan, Yin Chang-Chun, Gao Xiu-He, Liu Yun-He, and Ren Xiu-Yan. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(2): 342-352.
[13] Li Chang-Zheng, Yang Yong, Wang Rui, Yan Xiao-Fei. Acoustic parameters inversion and sediment properties in the Yellow River reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(1): 78-90.
[14] Sun Cheng-Yu, Wang Yan-Yan, Wu Dun-Shi, Qin Xiao-Jun. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm[J]. APPLIED GEOPHYSICS, 2017, 14(4): 551-558.
[15] Li Zhen-Chun, Lin Yu-Zhao, Zhang Kai, Li Yuan-Yuan, Yu Zhen-Nan. Time-domain wavefield reconstruction inversion[J]. APPLIED GEOPHYSICS, 2017, 14(4): 523-528.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn