APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (3): 292-302    DOI: 10.1007/s11770-015-0495-z
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Full tensor gravity gradiometry data inversion: Performance analysis of parallel computing algorithms
Hou Zhen-Long1, Wei Xiao-Hui1, Huang Da-Nian2, and Sun Xu3
1. College of Computer Science and Technology, Jilin University, Changchun 130026, China.
2. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China.
3. Engineering Training Center, Jilin University, Changchun 130026, China.
 Download: PDF (753 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract We apply reweighted inversion focusing to full tensor gravity gradiometry data using message-passing interface (MPI) and compute unified device architecture (CUDA) parallel computing algorithms, and then combine MPI with CUDA to formulate a hybrid algorithm. Parallel computing performance metrics are introduced to analyze and compare the performance of the algorithms. We summarize the rules for the performance evaluation of parallel algorithms. We use model and real data from the Vinton salt dome to test the algorithms. We find good match between model and real density data, and verify the high efficiency and feasibility of parallel computing algorithms in the inversion of full tensor gravity gradiometry data.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Hou Zhen-Long
Wei Xiao-Hui
Huang Da-Nian
Sun Xu
Key wordsMPI   CUDA   performance metrics   full tensor gravity gradiometry   density inversion     
Received: 2014-11-21;
Fund:

The research was supported by the Sino-Probe09 (No. 201011078) and National High-tech R&D Program (No. 863 and 2014AA06A613).

Cite this article:   
Hou Zhen-Long,Wei Xiao-Hui,Huang Da-Nian et al. Full tensor gravity gradiometry data inversion: Performance analysis of parallel computing algorithms[J]. APPLIED GEOPHYSICS, 2015, 12(3): 292-302.
 
[1] Chen, Z. X., Meng, X. H., Guo, L. H., and Liu, G. F., 2012a, GICUDA: A parallel program for 3D correlation imaging of large scale gravity and gravity gradiometry data on graphics processing units with CUDA:Computers & Geosciences,46, 119−128.
[2] Chen, Z. X., Meng, X. H., Guo, L. H., and Liu, G. F., 2012b, Three-dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU.Chinese Journal of Geophysics,55(12), 4069−4077.
[3] Cook, S., 2013,CUDA programming: a developer’s guide to parallel computing with GPUs: Chinese Machine Press, Beijing.
[4] Couder-Castañeda, C., Ortiz-Alemán, C., Orozco-del-Castillo, M. G., and Nava-Flores, M., 2013, TESLA GPUs versus MPI with OpenMP for the Forward Modeling of Gravity and Gravity Gradient of Large Prisms Ensemble:Journal of Applied Mathematics,1−15.
[5] Ennen, C., and Hall, S., 2011, Structural mapping of the Vinton salt dome, Louisiana, using gravity gradiometry data: 81st Annual International Meeting, SEG, Expanded Abstracts, 830-835.
[6] uma, M., and Zhdanov, M. S., 2014, Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs:Computers & Geosciences, 62, 80−87.
[7] Farber, R., 2011,CUDA application design and development: Chinese Machine Press, Beijing.
[8] Geng, M., Huang, D., Yang, Q., and Liu, Y., 2014, 3D inversion of airborne gravity-gradiometry data using cokriging: Geophysics,79(4), 37−47.
[9] Last, B. J., and Kubik, K., 1983, Compact gravity inversion:Geophysics, 48(6), 713−721.
[10] Li, Y., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data: Geophysics,61(2), 394−408.
[11] Li, Y., and Oldenburg, D. W., 1998, 3-D inversion of gravity data:Geophysics, 63(1), 109−119.
[12] Marfurt, K. J., Zhou, H. W., and Sullivan, E. C., 2004,Development and Calibration of New 3-D Vector VSP Imaging Technology: Vinton Salt Dome, LA. University of Houston, Houston.
[13] Moorkamp, M., Jegen, M., Roberts, A., and Hobbs, R., 2010, Massively parallel forward modeling of scalar and tensor gravimetry data:Computers & Geosciences,36(5), 680−686.
[14] NVidia, C.U.D.A. 2014a, CUDA C Programming Guide (Version 6.5):NVIDIA, Santa Clara, CA, USA,p.241.
[15] NVidia, C.U.D.A. 2014b, C Best Practices Guide (Version 6.5):NVIDIA, Santa Clara, CA, USA, p.85.
[16] NVidia, C.U.D.A. 2014c. CUBLAS Library (Version 6.5): NVIDIA, Santa Clara, CA, USA, p.143.
[17] NVidia, C.U.D.A. 2014d, CUDA Profiler Users Guide (Version 6.5):NVIDIA, Santa Clara, CA, USA,p.87.
[18] Oliveira, V. C., and Barbosa, V. C., 2013, 3-D radial gravity gradient inversion: Geophysical Journal International,195(2), 883−902.
[19] Pacheco, P., 2011,An introduction to parallel programming. Chinese Machine Press, Beijing.
[20] Pilkington, M., 1997, 3-D magnetic imaging using conjugate gradients: Geophysics,62(4), 1132−1142.
[21] Pilkington, M., 2008, 3D magnetic data space inversion with sparseness constraints: Geophysics,74(1), L7−L15.
[22] Portniaguine, O., and Zhdanov, M. S., 1999, Focusing geophysical inversion images:Geophysics,64(3), 874−887.
[23] Portniaguine, O. N., 1999,Image focusing and data compression in the solution of geophysical inverse problems:Ph.D. thesis, University of Utah, Utah, USA.
[24] Portniaguine, O., and Zhdanov, M. S., 2002, 3-D magnetic inversion with data compression and image focusing: Geophysics,67(5), 1532−1541.
[25] Siripunvaraporn, W., and Egbert, G., 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data.Geophysics,65(3), 791−803.
[26] Smith, J. T., and Booker, J. R., 1988, Magnetotelluric inversion for minimum structure: Geophysics,53(12), 1565−1576.
[27] Zhdanov, M. S., Ellis, R., and Mukherjee, S., 2004, Three-dimensional regularized focusing inversion of gravity gradient tensor component data: Geophysics,69(4), 925−937.
[1] Hou Zhen-Long, Huang Da-Nian, Wang En-De, and Cheng Hao. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. APPLIED GEOPHYSICS, 2019, 16(2): 141-153.
[2] Zhang Zhi-Yong, Tan Han-Dong, Wang Kun-Peng, Lin Chang-Hong, Zhang Bin, Xie Mao-Bi. Two-dimensional inversion of spectral induced polarization data using MPI parallel algorithm in data space[J]. APPLIED GEOPHYSICS, 2016, 13(1): 13-24.
[3] SUN Lu-Ping, LIU Zhan, SHOU Hao, ZHANG Yu-Hua. Parameter optimization of gravity density inversion based on correlation searching and the golden section algorithm*[J]. APPLIED GEOPHYSICS, 2012, 9(2): 131-138.
[4] LIN Chang-Hong, TAN Han-Dong, TONG Tuo. Parallel rapid relaxation inversion of 3D magnetotelluric data[J]. APPLIED GEOPHYSICS, 2009, 6(1): 77-83.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn