APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (1): 111-119    DOI: 10.1007/s11770-014-0463-z
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |   
Application of the double absorbing boundary condition in seismic modeling
Liu Yang1,2, Li Xiang-Yang1,2,3, and Chen Shuang-Quan1,2
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. Edinburgh Anisotropy Project, British Geophysical Survey, Edinburgh EH9 3LA, UK.
 Download: PDF (794 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract We apply the newly proposed double absorbing boundary condition (DABC) (Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference (FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer (PML), the complexity decreases, and the stability and flexibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Liu Yang
Li Xiang-Yang
Chen Shuang-Quan
Key wordsDouble absorbing boundary condition   numerical modeling   finite-difference method   artificial boundary condition     
Received: 2014-09-25;
Fund:

This research is supported by the National Nature Science Foundation of China (Grant No. U1262208) and the Important National Science & Technology Specific Projects (Grant No. 2011ZX05019-008).

Cite this article:   
Liu Yang,Li Xiang-Yang,Chen Shuang-Quan. Application of the double absorbing boundary condition in seismic modeling[J]. APPLIED GEOPHYSICS, 2015, 12(1): 111-119.
 
[1] Bécache, E., Givoli, D., and Hagstrom, T., 2010, High-order absorbing boundary conditions for anisotropic and convective wave equations: Journal of Computational Physics,229(4), 1099-1129.
[2] Bérenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetic waves: Journal of Computational Physics, 114, 185-200.
[3] Bécache, E., Fauqueux, S., and Joly, P., 2003, Stability of perfectly matched layers, group velocities and anisotropic waves: Journal of Computational Physics,188(2), 399-433.
[4] Cerjan, C., Kosloff, D., Kosloff, R., and Moshe, R., 1985, A non- reflection boundary condition for discrete acoustic and elastic wave equation: Geophysics, 50(4), 705-708.
[5] Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations: Bulletin of the Seismological Society of America,67(6), 1529-1540.
[6] Collino, F., 1993, High order absorbing boundary conditions for wave propagation models: Straight line boundary and corner cases: Proceedings of the 2nd International Conference on Mathematical and Numerical Aspects of Wave Propagation, 161-171.
[7] Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics,66(1), 294-307.
[8] Gedney, S. D., 1996, An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices: Antennas and Propagation, IEEE Transactions on,44(12), 1630-1639.
[9] Givoli, D., Neta, B., 2004, High-order non-reflecting boundary scheme for time-dependent waves: Journal of Computational Physics, 186(1), 24-46.
[10] Hagstrom, T., Givoli, D., Rabinovich, D., and Bielak, J., 2014, The Double Absorbing Boundary method: Journal of Computational Physics, 259, 220-241.
[11] Higdon, R. L., 1987, Numerical absorbing boundary conditions for the wave equation: Mathematics of Computation, 49(179), 65-90.
[12] Komatitsch, D. and Tromp, J., 2003, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation:Geophysical Journal International,154(1), 146-153.
[13] Liu, Y., and Sen, M. K., 2010, A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation: Geophysics,75(2), A1-A6.
[14] Liu, Y., and Sen, M. K., 2012, A hybrid absorbing boundary condition for elastic staggered-grid modeling: Geophysical Prospecting,60(6), 1114-1132.
[15] Rabinovich, D., Givoli, D., and Bécache, E., 2010, Comparison of high-order absorbing boundary conditions and perfectly matched layers in the frequency domain: International Journal for Numerical Methods in Biomedical Engineering,26(10), 1351-1369.
[16] Roden, J. A., and Gedney S. D., 2000, Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media: Microwave and Optical Technology Letters, 27(5), 334-339.
[17] Song J. Y., Zheng X. D., Zhang Y., Xu J. Q., Qin Z., and Song X. J., 2011, Frequency domain wave equation forward modeling using gaussian elimination with static pivoting: Applied Geophysics, 8(1), 60-68.
[18] Yan, H. Y., and Liu Y., 2013a, Visco-acoustic pre-stack reverse-time migration based on the time-space domain adaptive high-order finite-difference method: Geophysical Prospecting, 61, 941-954.
[19] Yan, H. Y., Liu Y., 2013b, Acoustic VTI modeling and pre-stack reverse-time migration based on the time-space domain staggered-grid finite-difference method: Journal of Applied Geophysics, 90, 41-52.
[20] Zhao, J. G., and Shi, R. Q., 2013, Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations: Applied Geophysics, 10(3), 323-336.
[1] Hu Jun, Cao Jun-Xing, He Xiao-Yan, Wang Quan-Feng, and Xu Bin. Numerical simulation of fault activity owing to hydraulic fracturing[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 367-381.
[2] Cheng Jing-Wang, Fan Na, Zhang You-Yuan, and Lü Xiao-Chun. Irregular surface seismic forward modeling by a body-fitted rotated–staggered-grid finite-difference method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 420-431.
[3] Dai Shi-Kun, Zhao Dong-Dong, Zhang Qian-Jiang, Li Kun, Chen Qing-Rui, and Wang Xu-Long. Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in space-wavenumber mixed domain[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 513-523.
[4] Cao Xue-Shen Chen Hao, Li Ping, He Hong-Bin, Zhou Yin-Qiu, and Wang Xiu-Ming. Wideband dipole logging based on segment linear frequency modulation excitation[J]. APPLIED GEOPHYSICS, 2018, 15(2): 197-207.
[5] Ren Ying-Jun, Huang Jian-Ping, Yong Peng, Liu Meng-Li, Cui Chao, and Yang Ming-Wei. Optimized staggered-grid finite-difference operators using window functions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 253-260.
[6] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[7] Hu Song, Li Jun, Guo Hong-Bo, Wang Chang-Xue. Analysis and application of the response characteristics of DLL and LWD resistivity in horizontal well[J]. APPLIED GEOPHYSICS, 2017, 14(3): 351-362.
[8] Fang Gang, Ba Jing, Liu Xin-Xin, Zhu Kun, Liu Guo-Chang. Seismic wavefield modeling based on time-domain symplectic  and Fourier finite-difference method[J]. APPLIED GEOPHYSICS, 2017, 14(2): 258-269.
[9] Zhang Yu, Ping Ping, Zhang Shuang-Xi. Finite-difference modeling of surface waves in poroelastic media and stress mirror conditions[J]. APPLIED GEOPHYSICS, 2017, 14(1): 105-114.
[10] Zhang Jian-Min, He Bing-Shou, Tang Huai-Gu. Pure quasi-P wave equation and numerical solution in 3D TTI media[J]. APPLIED GEOPHYSICS, 2017, 14(1): 125-132.
[11] Chen Hui, Deng Ju-Zhi Yin Min, Yin Chang-Chun, Tang Wen-Wu. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method[J]. APPLIED GEOPHYSICS, 2017, 14(1): 154-164.
[12] Meng Qing-Xin, Hu Xiang-Yun, Pan He-Ping, Zhou Feng. 10.1007/s11770-017-0600-6[J]. APPLIED GEOPHYSICS, 2017, 14(1): 175-186.
[13] Yang Si-Tong, Wei Jiu-Chuan, Cheng Jiu-Long, Shi Long-Qing, Wen Zhi-Jie. Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models[J]. APPLIED GEOPHYSICS, 2016, 13(4): 621-630.
[14] Fu Bo-Ye, Fu Li-Yun, Wei Wei, Zhang Yan. Boundary-reflected waves and ultrasonic coda waves in rock physics experiments[J]. APPLIED GEOPHYSICS, 2016, 13(4): 667-682.
[15] Tao Bei, Chen De-Hua, He Xiao, Wang Xiu-Ming. Rough interfaces and ultrasonic imaging logging behind casing[J]. APPLIED GEOPHYSICS, 2016, 13(4): 683-688.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn