APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (1): 55-63    DOI: 10.1007/s11770-014-0474-4
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Seismic dip estimation based on the two-dimensional Hilbert transform and its application in random noise attenuation
Liu Cai1, Chen Chang-Le1, Wang Dian1, Liu Yang1, Wang Shi-Yu1, and Zhang Liang2
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China.
2. Qian An Oil Factory, Jilin Oilfield, CNPC, Songyuan 138000, China.
 Download: PDF (965 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional (2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variable-amplitude polynomial fitting along the direction of the dip to improve the adaptive structure-oriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Liu Cai
Chen Chang-Le
Wang Dian
Liu Yang
Wang Shi-Yu
Zhang Liang
Key wordsTwo-dimensional Hilbert transform   random noise attenuation   structure protection   nonstationary polynomial fitting   local seismic dip     
Received: 2014-08-05;
Fund:

Research supported by the 863 Program of China (No. 2012AA09A20103) and the National Natural Science Foundation of China (No. 41274119, No. 41174080, and No. 41004041).

Cite this article:   
Liu Cai,Chen Chang-Le,Wang Dian et al. Seismic dip estimation based on the two-dimensional Hilbert transform and its application in random noise attenuation[J]. APPLIED GEOPHYSICS, 2015, 12(1): 55-63.
 
[1] Bekara, M., and van der Baan, M., 2009, Random and coherent noise attenuation by empirical mode decomposition: Geophysics, 74(5), V89-V98.
[2] Fehmers, G. C., and Höcker, C. F. W., 2003, Fast structural interpretation with structure-oriented filtering: Geophysics, 68(4), 1286-1293.
[3] Fomel, S., and Guitton, A., 2006, Regularizing seismic inverse problems by model reparameterization using plane-wave construction: Geophysics, 71(5), A43-A47.
[4] Fomel, S., 2009, Adaptive multiple subtraction using regularized nonstationary regression: Geophysics, 74(1), V25-V33.
[5] Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67(6), 1946-1960.
[6] Fomel, S., 2007, Shaping regularization in geophysical-estimation problems: Geophysics, 72(2), R29-R36.
[7] Hoeber, H. C., Brandwood, S., and Whitcombe, D. N., 2006, Structurally consistent filtering: In 68th EAGE Conference Exhibition.
[8] Lehmer, D. H., 1985, Interesting series involving the central binomial coefficient: American Mathematical Monthly, 449-457.
[9] Li, H. S., Wu, G. C., and Yin, X. Y., 2012, Application of Morphological Component Analysis to Remove of Random Noise in Seismic Data: Journal of Jilin University(Earth Science Edition), 42(2), 554-561.
[10] Li, Y., Yang, B. J., Lin, and H. B., et al. 2013, Suppression of strong random noise in seismic data by using time-frequency peak filtering: Science China Earth Sciences, 56(7), 1200-1208.
[11] Liu, C., Liu, Y., and Yang, B. J., et al. 2006, A 2D multistage median filter to reduce random seismic noise: Geophysics, 71(5), V105-V110.
[12] Liu, G., Chen, X., 2013, Noncausal f-x-y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data: Journal of Applied Geophysics, 93, 60-66.
[13] Liu, G. C., Chen, X. H., and Li, J. Y., et al. 2011, Seismic noise attenuation using nonstationary polynomial fitting: Applied Geophysics, 8(1), 18-26.
[14] Liu, G., Chen, X., and Du, J., et al. 2012, Random noise attenuation using f-x regularized nonstationary autoregression: Geophysics, 77(2), V61-V69.
[15] Liu, Y., Fomel, S., and Liu, G., 2010, Nonlinear structure-enhancing filtering using plane-wave prediction: Geophysical Prospecting, 58(3), 415-427.
[16] Liu, Y., Fomel, S., and Liu, C., et al. 2009, High-order seislet transform and its application of random noise attenuation: Chinese Journal of Geophysics, 52(8), 2142-2151.
[17] Liu, Y., Liu, C., and Wang, D, 2008, A 1D time-varying median filter for seismic random, spike-like noise elimination: Geophysics, 74(1), V17-V24.
[18] Liu, Y., Wang, D., and Liu, C., et al. 2011, Weighted median filter based on local correlation and its application to poststack random noise attenuation: Chinese Journal of Geophysics, 54(2), 358-367.
[19] Liu, Z., Zhao, W., and Chen, X., et al 2012, Local SVD for random noise suppression of seismic data in frequency domain: Oil Geophysical Prospecting, 47(2), 202-206.
[20] Lu, W., Zhang, W., and Liu, D., 2006, Local linear coherent noise attenuation based on local polynomial approximation: Geophysics, 71(6), V163-V169.
[21] Lu, Y. H., and Lu, W. K., 2009, Edge-preserving polynomial fitting method to suppress random seismic noise: Geophysics, 74(4), V69-V73.
[22] Maraschini, M., Neill Turton, C. G. G., 2013, Assessing the impact of a Non-Local-Means random noise attenuator on coherency: SEG Technical Program Expanded Abstracts, 4294-4298.
[23] Ottolini, R., 1983, Signal/noise separation in dip space: SEP Report, 37, 143-149.
[24] Pei, S. C., and Wang, P. H., 2001, Closed-form design of maximally flat FIR Hilbert transformers, differentiators, and fractional delayers by power series expansion: IEEE Transactions on, Circuits and Systems I: Fundamental Theory and Applications, 48(4), 389-398.
[25] Schleicher, J., Costa, J. C., and Santos, L. T., et al. 2009, On the estimation of local slopes: Geophysics, 74(4), P25-P33.
[26] Tikhonov, A., 1963, Solution of incorrectly formulated problems and the regularization method: In Soviet Math. Dokl, pp., 1035-1038.
[27] Zhang, C., Lin, H. B., and Li, Y., et al. 2013, Seismic random noise attenuation by time-frequency peak filtering based on joint time-frequency distribution: Comptes Rendus Geoscience, 345(9), 383-391.
[1] Gan Shu-Wei, Wang Shou-Dong, Chen Yang-Kang, Chen Jiang-Long, Zhong Wei, Zhang Cheng-Lin. Improved random noise attenuation using f–x empirical mode decomposition and local similarity[J]. APPLIED GEOPHYSICS, 2016, 13(1): 127-134.
[2] Ma Yan-Yan, Li Guo-Fa, Wang Yao-Jun, Zhou Hui, Zhang Bao-Jiang. Random noise attenuation by f–x spatial projection-based complex empirical mode decomposition predictive filtering[J]. APPLIED GEOPHYSICS, 2015, 12(1): 47-54.
[3] WANG De-Li, TONG Zhong-Fei, TANG Chen, ZHU Heng. An iterative curvelet thresholding algorithm for seismic random noise attenuation[J]. APPLIED GEOPHYSICS, 2010, 7(4): 315-324.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn