APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (1): 35-46    DOI: 10.1007/s11770-014-00476-2
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Three-dimensional tensor controlled-source electromagnetic modeling based on the vector finite-element method
Hu Ying-Cai1, Li Tong-Lin1, Fan Cui-Song2, Wang Da-Yong3, and Li Jian-Ping4
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. Tianjing Center, China Geological Survey, Tianjing 300170, China.
3. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China.
4. College of Geosciences and Technology, ShanDong University of Science and Technology, Qingdao 266590, China.
 Download: PDF (1222 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Hu Ying-Cai
Li Tong-Lin
Fan Cui-Song
Wang Da-Yong
Li Jian-Ping
Key wordsCSAMT   model   impedance tensor   VFEM     
Received: 2014-08-14;
Fund:

This work was supported by the National Natural Science Foundation of China (No. 41104068) and the Deep Exploration in China, SinoProbe-03-05.

Cite this article:   
Hu Ying-Cai,Li Tong-Lin,Fan Cui-Song et al. Three-dimensional tensor controlled-source electromagnetic modeling based on the vector finite-element method[J]. APPLIED GEOPHYSICS, 2015, 12(1): 35-46.
 
[1] Boerner, D. E., Wright, J. A., Thurlow, J. G., and Reed, L. E., 1993, Tensor CSAMT studies at the Buchans Mine in central Newfoundland: Geophysics, 58(1), 12−19.
[2] Bromley, C., 1993, Tensor CSAMT study of the fault zone between Waikite and Te Kopia geothermal fields: Journal of Geomagnetism and Geoelectricity, 45(9), 887−896.
[3] Fan, C. S., 2013, Research on complex resistivity forward and invertion with finite element and its application: Doctor’s thesis, Jilin University.
[4] Hu, X. Y., Peng, R. H., Wu, G. J., Wang, G. J., Wang, W. P., Huo, G. P., and Han, B., 2012, Mineral Exploration using CSAMT data: Application to Longmen region metallogenic belt, Guangdong Province, China: Geophysics, 78(3), B111−B119.
[5] Jin, J. M., 1998, Finite element method of electromagnetic field: Xi’an Electronic University Press, 164−200.
[6] Li, X. B., Pedersen, and L. B., 1991, Controlled Source Tensor Magnetotellurics: Geophysics, 56(9), 1456−1461.
[7] Lin, C. H., Tan, H. D., and Tong, T., 2009, Three-dimensional conjugate gradient inversion of magnetotelluric full information data: Applied Geophysics, 8(1), 1−10.
[8] Liu, C. S., Ren, Z. Y., Tang, J. T., and Yan, Y., 2008, Three-dimensional magnetotellurics modeling using edge-based finite-element unstructured meshes: Applied Geophysics, 3, 170−180.
[9] Meng, Q. K., Lin, P. R., and Xu, B. L., 2013, Study of one-dimensional numerical simulation of tensor CSAMT: Computing Techniques for Geophysical and Geochemical Exploration, 35(4), 435−441.
[10] Mukherjee, S., and Everett, M. E., 2011, 3D controlled-source electromagnetic edge-based finite element modeling of conductive and permeable heterogeneities: Geophysics, 76(4), F215−F226.
[11] Nam, M. J., Kim, H. J., Song, Y., Lee, T. J., and Son, J. S., 2007, 3D magnetotelluric modeling including surface topography: Geophysics, 55, 277−287.
[12] Silva, N. V., Morgan, J. V., MacGregor, L., and Warner, M., 2012, A finite element multifrontal method for 3D CSEM modeling in the frequency domain: Geophysics, 77(2), E101−E115.
[13] Wang, Y., 2008, A study of 3D high frequency magnetotellurics modeling by edge-based finite element method: Doctor’s thesis, Central South University, Hunan.
[14] Wang, S. M., Li, D. S., and Hu, H., 2013, Numerical modeling of magnetotelluric tensor in the context of 3D/3D formation: Chinese Journal of Geophysics (in Chinese), 56(5), 1745−1752.
[15] Wang, X. X., Di, Q. Y., and Xu, C. 2014, Characteristics of multiple sources and tensor measurement in CSAMT: Chinese Journal of Geophysics (in Chinese), 57(2), 651−661.
[16] Wannamaker, P. E., 1997a Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, United States of America, Part I: Implications for structure of the western caldera: Geophysics, 62(2), 451−465.
[17] Wannamaker, P. E., 1997b, Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, United States of America, Part II : Implications for CSAMT methodology: Geophysics, 62(2), 466−476.
[18] Wu, L. P., Shi, K. F., and Li, Y. H., 1996, Application of CSAMT to the search for ground water: Chinese Journal of Geophysics (in Chinese), 39(5), 712−717.
[19] Xu, S. Z., 1994, The finite-element method in Geophysics: Science Press, Beijing, 238−254.
[20] Tan, H. D., We, W. B., Deng, M., and J, S., 2004, General use formula in MT tensor impedance: Oil geophysical prospecting, 39(1), 113−116.
[21] Xu, Z. F., and Wu, X. P., 2010, Controlled source eletromagnetic 3-D modeling in frequency domain by finite element method: Chinese Journal of Geophysics (in Chinese), 53(8), 1931−1939.
[22] Yu, C. M., 1998, The application of CSAMT method in looking for hidden gold mine: Chinese Journal of Geophysics (in Chinese), 41(1), 133−138.
[23] Zhang, J. F., Tang, J. T., Yu, Y., Wang, Y., Liu, C. S., and Xiao, X., 2009, Three dimensional controlled source eletromagnetic numerical simulation based on electric field vector equation using finite element method: Chinese Journal of Geophysics (in Chinese), 52(12), 3132−3141.
[1] Liu Guo-Feng, Meng Xiao-Hong, Yu Zhen-Jiang, and Liu Ding-Jin. An efficient scheme for multi-GPU TTI reverse time migration*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 61-69.
[2] Zhang Zhen-Bo, Xuan Yi-Hua, and Deng Yong. Simultaneous prestack inversion of variable-depth streamer seismic data*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 99-108.
[3] Li Kun, Chen Long-Wei, Chen Qing-Rui, Dai Shi-Kun, Zhang Qian-Jiang, Zhao Dong-Dong, and Ling Jia-Xuan. Fast 3D forward modeling of the magnetic field and gradient tensor on an undulated surface[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 500-512.
[4] Sun Si-Yuan, Yin Chang-Chun, Gao Xiu-He, Liu Yun-He, and Ren Xiu-Yan. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(2): 342-352.
[5] Zhang Bo, Yin Chang-Chun, Liu Yun-He, Ren Xiu-Yan, Qi Yan-Fu, Cai Jing. 3D forward modeling and response analysis for marine CSEMs towed by two ships[J]. APPLIED GEOPHYSICS, 2018, 15(1): 11-25.
[6] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[7] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
[8] Huang Xin, Yin Chang-Chun, Cao Xiao-Yue, Liu Yun-He, Zhang Bo, Cai Jing. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method[J]. APPLIED GEOPHYSICS, 2017, 14(3): 419-430.
[9] Wang Jun-Lu, Lin Pin-Rong, Wang Meng, Li Dang, Li Jian-Hua. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. APPLIED GEOPHYSICS, 2017, 14(2): 291-300.
[10] Liu Xin, Liu Yang, Ren Zhi-Ming, Cai Xiao-Hui, Li Bei, Xu Shi-Gang, Zhou Le-Kai. Hybrid absorbing boundary condition for three-dimensional elastic wave modeling[J]. APPLIED GEOPHYSICS, 2017, 14(2): 270-278.
[11] Fang Gang, Ba Jing, Liu Xin-Xin, Zhu Kun, Liu Guo-Chang. Seismic wavefield modeling based on time-domain symplectic  and Fourier finite-difference method[J]. APPLIED GEOPHYSICS, 2017, 14(2): 258-269.
[12] Wang Kun-Peng, Tan Han-Dong, Wang Tao. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory[J]. APPLIED GEOPHYSICS, 2017, 14(2): 279-290.
[13] Zhao Hu, Wu Si-Hai, Yang Jing, Ren Da, Xu Wei-Xiu, Liu Di-Ou, Zhu Peng-Yu. Designing optimal number of receiving traces based on simulation model[J]. APPLIED GEOPHYSICS, 2017, 14(1): 49-55.
[14] Chen Hui, Deng Ju-Zhi Yin Min, Yin Chang-Chun, Tang Wen-Wu. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method[J]. APPLIED GEOPHYSICS, 2017, 14(1): 154-164.
[15] Bai Ze, Tan Mao-Jin, Zhang Fu-Lai. Three-dimensional forward modeling and inversion of borehole-to-surface electrical imaging with different power sources[J]. APPLIED GEOPHYSICS, 2016, 13(3): 437-448.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn