APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (1): 11-22    DOI: 10.1007/s11770-014-0478-0
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs
Huang Xin-Rui1, Huang Jian-Ping1, Li Zhen-Chun1, Yang Qin-Yong2, Sun Qi-Xing1, and Cui Wei1
1. School of Geoscience of China University of Petroleum (East China), Qingdao 266580, China.
2. Sinopec Geophysical Research Institute, Nanjing 211103, China.
 Download: PDF (1749 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Brittleness analysis becomes important when looking for sweet spots in tight-oil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Huang Xin-Rui
Huang Jian-Ping
Li Zhen-Chun
Yang Qin-Yong
Sun Qi-Xing
Cui Wei
Key wordsbrittleness index   tight-oil sandstone reservoirs   seismic rock physics model   brittleness sensitivity   anisotropy     
Received: 2014-12-21;
Fund:

This work is supported by the National 973 project (Nos. 2014CB239006 and 2011CB202402),the National Natural Science Foundation of China (Nos. 41104069 and 41274124), Sinopec project (No. KJWX2014-05) and the Fundamental Research Funds for the Central Universities (No. R1401005A).

Cite this article:   
Huang Xin-Rui,Huang Jian-Ping,Li Zhen-Chun et al. Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs[J]. APPLIED GEOPHYSICS, 2015, 12(1): 11-22.
 
[1] Ba, J., Carcione, J. M., and Nie, J. X., 2011, Biot-Rayleigh theory of wave propagation in double-porosity media: Geophys. Res., 116, B06202.
[2] Ba, J., Cao, H., Yao, F. C., Nie, J. X., and Y, H. Z., 2008, Double-porosity rock model and squirt flow in the laboratory frequency band: Applied Geophysics, 5(4), 261−276.
[3] Berryman, J. G., 1995, Mixture theories for rock properties, in Washington, D. C. Ed., a handbook of physical constants: American Geophysical Union, 205−228.
[4] Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media: The Journal of the Acoustical Society of America, 68(6), 1820−1831.
[5] Brown, R., Korringa, J., 1975, On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid: Geophysics, 40(4), 608−616.
[6] Cai, B., Ding, Y. H., Lu, Y. J., Wang, X. D., Yang, Z. D., Sun, H., and Wu, G. H., 2012, Study of Rock Brittleness for Stimulated Reservoir Volume Fracture Technology: Journal of Chongqing University of Science and Technology (National Sciences Edition) (in Chinese), 14(5), 86−88.
[7] Chen, J. J., Zhang, G. Z., Chen, H. Z., and Yin, X. Y., 2014, The construction of Shale rock physics effective model and prediction of rock brittleness: 84th A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 2861−2865.
[8] Diao, H. Y., 2013, Rock mechanical properties and brittleness evaluation of shale reservoir: Acta Petrologica Sinica (in Chinese), 29(9), 3300−3306.
[9] Fu, J. H., Deng, X. Q., Zhang, X. L., Luo, A. X., and Nan, Q. X., 2013, Relationship between deepwater sandstone and tight oil of the Triassic Yanchang Formation in Ordos Basin: Journal of Palaeogeography (in Chinese), 15(5), 0624−0634.
[10] Guo, Z. Q., Chapman, M., and Li, X. Y., 2012a., A shale rock physics model and its application in the predictin of brittleness index, mineralogy, and porosity of the Barnet Shale: 82nd A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1−5.
[11] Guo, Z. Q., Chapman, M., and Li, X. Y., 2012b, Exploring the effect of fractures and microstructure on brittleness index in the Barnett Shale: 82nd A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1−5.
[12] Goodway, B., Perez, M., Varsek, J., and Abaco, C., 2010, Seismic petrophysics and isotropic-anisotropic AVO methods for unconventional gas exploration: The Leading Edge, 29(12), 1500−1508.
[13] Grieser, B., and Bray, J., 2007, Identification of production potential in unconventional reservoirs: Proceedings of the Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE 106623.
[14] Gassmann, F., 1951, Uber die Elastizita porooser Mddien: Vier. der Natur. Gesellschaft in Zurich, 96, 1-23.
[15] Jia, C. Z., Zhou, C. N., Li, J. Z., Li, D. H., Z, M., 2012, The evaluation standard, main types, basic characteristics and resources Prospect of the china’s tight oil: Acta Petrolei Sinica (in Chinese), 33(3), 343−340
[16] Kuster, G. T., and Toksoz, M. N., 1974, Velocity and attenuation of seismic waves in two phase media: Part 1, Theoretical formulation: Geophysics, 39(5), 587−606.
[17] Li, Z. P., H, F. Y., He, X. W., Zang, W. L., and He, Y. T,. 2014, Shale-gas reservoir-prediction study in Daanzhai, Eastern Sichuan Basin: The Leading Edge, 526−534.
[18] Mavko, G., T. Mukerji, and J. Dvorkin, 2009, The rock physics handbook: Tools for seismic analysis of porous media.: Cambridge University Press.
[19] Perez, R., and Marfurt, K., 2013, Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett Shale: 83rd A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 2258−2263.
[20] Ruiz, F., and Azizov, I., 2011, Fluid substitution in tight shale using the soft-porosity model: 81st A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 2272−2276.
[21] Ruiz, F., and Cheng, A., 2010, A rock physics model for tight gas sand: The Leading Edge, 1484−1489.
[22] Rickman, R., Mullen, M., Petre, E., Grieser, B., and Kundert, D., 2008, A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale: Proceedings of the Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE 115258.
[23] Sharma, R., and Chopra, S., 2012, New attribute for determination of lithology and brittleness: 82nd A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1−5.
[24] Sun, C. Y., 2007, Theory and Methods of Seismic Waves. Dong Ying: China University of Petroleum of Press.
[25] Tian, J. F., Gao, Y. L., Zhang, P. B., Wang, X. J., and Yang, Y. Y., 2013, Genesis of illite in Chang 7 tight oil reservoir in Heshui area, Ordos Basin: Oil & Gas Geology (in Chinese), 34(5), 700−707.
[26] Wang, P., Wu, G. C., Dai, R. H., and Zhang, W. X., 2014, A new rock physics model for tight reservoirs: 84th A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 2931−2935.
[27] Wu, G. C., 2006, Seismic wave propagation and imaging of anisotropic medium. Dong Ying: China University of Petroleum of Press, Dongying, Shangdong.
[28] Xu, S., White, R. E., 1996, A physical model for shear-wave velocity prediction: Geophysical Prospecting, 44(5), 687-717.
[29] Yang, R. Z., Zhao, Z. G., Pang, H. L., Li, C. C., and Chou, N. G., 2012, The controlling factors and the methods of earthquake prediction of the geological enrichment zone of shale gas: Earth Science Frontiers, 19(5), 339-347.
[30] Zhou, F., Ma, Z., and Li, C., 2014, An effective model for tight gas sands: CPS/SEG Beijing 2014 International Geophysical Conference, 993−995.
[31] Zhou, S. S., Yi, W., Hao, Z. B., Huang, W. Q., and Wu, X. Y., 2012, Experiment research and application of fluid sensitive attribute based on the prestack inversion: Chinese J. Geophys (in Chinese), 55(6), 1985−1992.
[32] Zhu, R. K., Bai, B., et al., 2013, Research advances of microstructure in unconventional tight oil and gas reservoir: Journal of Palaeogeography (in Chinese), 15(5), 615−623.
[1] . Seismic prediction method of multiscale fractured reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(2): 240-252.
[2] Guo Gui-Hong, Yan Jian-Ping, Zhang Zhi, José Badal, Cheng Jian-Wu, Shi Shuang-Hu, and Ma Ya-Wei. Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
[3] Yan Li-Li, Cheng Bing-Jie, Xu Tian-Ji, Jiang Ying-Ying, Ma Zhao-Jun, Tang Jian-Ming. Study and application of PS-wave pre-stack migration in HTI media and an anisotropic correction method[J]. APPLIED GEOPHYSICS, 2018, 15(1): 57-68.
[4] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[5] Qian Ke-Ran, He Zhi-Liang, Chen Ye-Quan, Liu Xi-Wu, Li Xiang-Yang. Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale[J]. APPLIED GEOPHYSICS, 2017, 14(4): 463-480.
[6] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
[7] Huang Xin, Yin Chang-Chun, Cao Xiao-Yue, Liu Yun-He, Zhang Bo, Cai Jing. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method[J]. APPLIED GEOPHYSICS, 2017, 14(3): 419-430.
[8] Su Ben-Yu and Yue Jian-Hua. Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams[J]. APPLIED GEOPHYSICS, 2017, 14(2): 216-224.
[9] Fang Gang, Ba Jing, Liu Xin-Xin, Zhu Kun, Liu Guo-Chang. Seismic wavefield modeling based on time-domain symplectic  and Fourier finite-difference method[J]. APPLIED GEOPHYSICS, 2017, 14(2): 258-269.
[10] Song Lian-Teng, Liu Zhong-Hua, Zhou Can-Can, Yu Jun, Xiu Li-Jun, Sun Zhong-Chun, Zhang Hai-Tao. Analysis of elastic anisotropy of tight sandstone and the influential factors[J]. APPLIED GEOPHYSICS, 2017, 14(1): 10-20.
[11] Liu Xi-Wu, Guo Zhi-Qi, Liu Cai, Liu Yu-Wei. Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin, China[J]. APPLIED GEOPHYSICS, 2017, 14(1): 21-30.
[12] He Yi-Yuan, Hu Tian-Yue, He Chuan, Tan Yu-Yang. P-wave attenuation anisotropy in TI media and its application in fracture parameters inversion[J]. APPLIED GEOPHYSICS, 2016, 13(4): 649-657.
[13] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. Pitfalls of microseismic data inversion in the case of strong anisotropy[J]. APPLIED GEOPHYSICS, 2016, 13(2): 326-332.
[14] Guo Zhi-Qi, Liu Cai, Liu Xi-Wu, Dong Ning, and Liu Yu-Wei. Research on anisotropy of shale oil reservoir based on rock physics model[J]. APPLIED GEOPHYSICS, 2016, 13(2): 382-392.
[15] Yin Chang-Chun, Zhang Ping, Cai Jing. Forward modeling of marine DC resistivity method for a layered anisotropic earth[J]. APPLIED GEOPHYSICS, 2016, 13(2): 279-287.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn