APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2011, Vol. 8 Issue (1): 1-10    DOI: 10.1007/s11770-010-0266-9
article Current Issue | Next Issue | Archive | Adv Search  |  Next Articles  
Three-dimensional conjugate gradient inversion of magnetotelluric full information data
Lin Chang-Hong1,2,3, Tan Han-Dong1,2,3, and Tong Tuo1,2,3
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China.
2. Key Laboratory of Geo-detection (China University of Geosciences), Ministry of Education, Beijing, 100083, China.
3. School of Geophysics and Information Technology, China University of Geosciences, Beijing, 100083, China.
 Download: PDF (538 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from fi ve electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LIN Chang-Hong
TAN Han-Dong
TONG Tuo
Key wordsMagnetotelluric   full information data   3D inversion   conjugate gradient     
Received: 2010-09-30;
Fund:

This work is jointly supported by the National Hi-tech Research and Development Program of China (863 Program) (No. 2007AA09Z310), National Natural Science Foundation of China (Grant No.40774029, 40374024), the Fundamental Research Funds for the Central Universities (Grant No. 2010ZY53), and the Program for New Century Excellent Talents in University (NCET).

Cite this article:   
LIN Chang-Hong,TAN Han-Dong,TONG Tuo. Three-dimensional conjugate gradient inversion of magnetotelluric full information data[J]. APPLIED GEOPHYSICS, 2011, 8(1): 1-10.
 
[1] Avdeev, D. B., and Avdeeva, A. D., 2006, A rigorous three-dimensional magnetotelluric inversion: Progress in Electromagnetics Research, 62, 41 - 48.
[2] Becken, M., Ritter, O., and Burkhardt, H., 2008, Mode separation of magnetotelluric responses in three-dimensional environments: Geophys. J. Int., 172, 67 - 86.
[3] Berdichevsky, M. N., Dmitriev, V. I., Golubtsova, N. S., Mershchikova, N. A., and Pushkarev, P. Yu., 2003, Magnetovariational sounding: new possibilities, Izvestiya: Physics of the Solid Earth, 39(9), 701 - 727.
[4] DeGroot-Hedlin, C., and Constable, S., 1990, Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data: Geophysics, 55(12), 1613 - 1624.
[5] Fletcher, R., and Reeves, C. M., 1964, Function minimization by conjugate gradients: Comp. J., 7, 149-154.
[6] 胡祖志, 胡祥云, 何展翔, 2006, 大地电磁非线性共轭梯度拟三维反演: 地球物理学报, 49(4), 1226 - 1234.
[7] Jupp, D. L. B., and Vozoff, K., 1977, Two-dimensional magnetotelluric inversion: Geophys. J. Roy. Astr. Soc., 50, 333 - 352.
[8] Lin, C. H., Tan, H. D., and Tong, T., 2008, Three-dimensional conjugate gradient inversion of magnetotelluric sounding data: Applied Geophysics, 5(4), 314 - 321.
[9] Lin, C. H., Tan, H. D., and Tong, T., 2009, Parallel rapid relaxation inversion of 3D magnetotelluric data: Applied Geophysics, 6(1), 77 - 83.
[10] Madden, T. R., and Mackie, R. L., 1989, Three-dimensional magnetotelluric modeling and inversion: Proc. IEEE, 77, 318 - 333.
[11] Mackie, R. L., and Madden, T. R., 1993, Three-dimensional magnetotelluric inversion using conjugate gradients: Geophys. J. Int., 115, 215 - 229.
[12] Newman, G. A., and Alumbaugh, D. L., 1997, Three-dimensional massively parallel electromagnetotelluric inversion - I. Theory: Geophys. J. Int., 128, 345 - 354.
[13] Newman, G. A., and Alumbaugh, D. L., 2000, Three-dimensional magnetotelluric inversion using non-linear conjugate gradients: Geophys. J. Int., 140, 410 - 424.
[14] Rodi, W., and Mackie, R. L., 2001, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion: Geophysics, 66, 174 - 187.
[15] Spichak, V., and Popova, 2000, Artificial neural network inversion of magnetotelluric data in terms of three-dimensional earth macroparameters: Geophys. J. Int., 142, 15 - 26.
[16] Siripunvaraporn, W., and Egbert, G., 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data: Geophysics, 65, 791 - 803.
[17] Siripunvaraporn, W., and Egbert, G., 2009, Vertical magnetic ?eld transfer function inversion and parallel implementation: Physics of the Earth and Planetary Interiors, 173, 317 - 329.
[18] Siripunvaraporn, W., Egbert, G., Lenbury, Y., and Uyeshima, M., 2005, Three-dimensional magnetotelluric inversion: data-space method: Physics of The Earth and Planetary Interiors, 150(1 - 3), 3 - 14.
[19] Smith, J. T., and Booker, J. R., 1991, Rapid inversion of two- and three-dimensional magnetotelluric data: J. Geophys. Res, 96(B3), 3905 - 3922.
[20] 谭捍东, 余钦范, Booker, J., 魏文博, 2003a, 大地电磁法三维交错采样有限差分数值模拟: 地球物理学报, 46(5), 705 - 711.
[21] 谭捍东, 余钦范, Booker, J., 魏文博, 2003b, 大地电磁法三维快速松弛反演: 地球物理学报, 46(6), 850 - 855.
[22] 谭捍东, 魏文博, 邓明, 金盛, 大地电磁法张量阻抗通用计算公式: 石油地球物理勘探, 39(1), 113 - 116.
[23] Tuncer, V., Unsworth, M. J., Siripunvaraporn, W., and Craven, J. A., 2006, Exploration for unconformity type uranium deposits with audio-magnetotelluric data: A case study from the McArthur River Mine, Saskatchewan (Canada): Geophysics, 71(6), B201 - B209.
[24] Zhdanov, M. S., Fang, S., and Hursan, G., 2000, Electromagnetic inversion using quasi-linear approximation: Geophysics, 65(5), 1501 - 1513.
[1] Cao Xiao-Yue, Yin Chang-Chun, Zhang Bo, Huang Xin, Liu Yun-He, and Cai Jing. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 556-565.
[2] Sun Xiao-Dong, Jia Yan-Rui, Zhang Min, Li Qing-Yang, and Li Zhen-Chun. Least squares reverse-time migration in the pseudodepth domain and reservoir exploration[J]. APPLIED GEOPHYSICS, 2018, 15(2): 234-239.
[3] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[4] Sun Xiao-Dong, Ge Zhong-Hui, Li Zhen-Chun. Conjugate gradient and cross-correlation based least-square reverse time migration and its application[J]. APPLIED GEOPHYSICS, 2017, 14(3): 381-386.
[5] Wang Jun-Lu, Lin Pin-Rong, Wang Meng, Li Dang, Li Jian-Hua. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. APPLIED GEOPHYSICS, 2017, 14(2): 291-300.
[6] Wang Kun-Peng, Tan Han-Dong, Wang Tao. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory[J]. APPLIED GEOPHYSICS, 2017, 14(2): 279-290.
[7] Wang Tai-Han, Huang Da-Nian, Ma Guo-Qing, Meng Zhao-Hai, Li Ye. Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data[J]. APPLIED GEOPHYSICS, 2017, 14(2): 301-313.
[8] Cao Meng, Tan Han-Dong, Wang Kun-Peng. 3D LBFGS inversion of controlled source extremely low frequency electromagnetic data[J]. APPLIED GEOPHYSICS, 2016, 13(4): 689-700.
[9] Liu Yun-He, Yin Chang-Chun, Ren Xiu-Yan, Qiu Chang-Kai. 3D parallel inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2016, 13(4): 701-711.
[10] Wang Tao, Tan Han-Dong, Li Zhi-Qiang, Wang Kun-Peng, Hu Zhi-Ming, Zhang Xing-Dong. 3D finite-difference modeling algorithm and anomaly features of ZTEM[J]. APPLIED GEOPHYSICS, 2016, 13(3): 553-560.
[11] Li Jun-Jie, Yan Jia-Bin, Huang Xiang-Yu. Precision of meshfree methods and application to forward modeling of two-dimensional electromagnetic sources[J]. APPLIED GEOPHYSICS, 2015, 12(4): 503-515.
[12] Hu Ying-Cai, Li Tong-Lin, Fan Cui-Song, Wang Da-Yong, Li Jian-Ping. Three-dimensional tensor controlled-source electromagnetic modeling based on the vector finite-element method[J]. APPLIED GEOPHYSICS, 2015, 12(1): 35-46.
[13] WANG Zhu-Wen, XU Shi, LIU Yin-Ping, LIU Jing-Hua. Extrapolated Tikhonov method and inversion of 3D density images of gravity data[J]. APPLIED GEOPHYSICS, 2014, 11(2): 139-148.
[14] LIN Chang-Hong, TAN Han-Dong, SHU Qing, TONG Tuo, ZHANG Yu-Mei. Three-dimensional interpretation of sparse survey line MT data: Synthetic examples*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 9-18.
[15] SONG Jian-Yong, ZHENG Xiao-Dong, QIN Zhen, SU Ben-Yu. Multi-scale seismic full waveform inversion in the frequency-domain with a multi-grid method[J]. APPLIED GEOPHYSICS, 2011, 8(4): 303-310.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn