APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2014, Vol. 11 Issue (4): 459-467    DOI: 10.1007/s11770-014-0459-8
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Nonstationary sparsity-constrained seismic deconvolution
Sun Xue-Kai1,2, Sam Zandong Sun1,2, and Xie Hui-Wen3
1. Lab for integration of Geology and Geophysics, China University of Petroleum (Beijing), Beijing 102249.
2. State Key Lab for Petroleum Resources and Prospecting, Beijing 102249.
3. Tarim Oilfield Company (CNPC), Korla 841000, China.
 Download: PDF (1120 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract 传统Robinson褶积模型主要受缚于三种不合理的假设,即白噪反射系数、最小相位地震子波与稳态假设,而现代反射系数反演方法(如稀疏约束反褶积等)均在前两个假设上寻求突破的同时却忽视了一个重要事实:实际地震信号具有典型的非稳态特征,这直接冲击着反射系数反演中地震子波不随时间变化的这一基础性假设。本文首先通过实际反射系数测试证实,非稳态效应造成重要信息无法得到有效展现,且对深层影响尤为严重。为校正非稳态影响,本文从描述非稳态方面具有普适性的非稳态褶积模型出发,借助对数域的衰减曲线指导检测非稳态影响并以此实现对非稳态均衡与校正。与常规不同,本文利用对数域Gabor反褶积仅移除非稳态影响,而将分离震源子波和反射系数的任务交给具有更符合实际条件的稀疏约束反褶积处理,因此结合两种反褶积技术即可有效解决非稳态特征影响,又能避免反射系数和地震子波理想化假设的不利影响。海上地震资料的应用实际表明,校正非稳态影响有助于恢复更丰富的反射系数信息,使得与地质沉积和构造相关的细节特征得到更加清晰的展现。
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
SUN Xue-Kai
SUN Zan-Dong
XIE Hui-Wen
Key words非稳态   稀疏约束   波阻抗约束   Gabor反褶积   对数时频域     
Received: 2013-10-20;
Fund:

This research is funded by the National Basic Research Program of China (973 Program) (Grant No. 2011CB201100) and Major Program of the National Natural Science Foundation of China (Grant No. 2011ZX05004003).

Cite this article:   
SUN Xue-Kai,SUN Zan-Dong,XIE Hui-Wen. Nonstationary sparsity-constrained seismic deconvolution[J]. APPLIED GEOPHYSICS, 2014, 11(4): 459-467.
 
[1] Bickel, S. H., and Natarajan, R. R., 1985, Plane-wave Q deconvolution: Geophysics, 50, 1426-1439.
[2] Canadas, G., 2002, A mathematical framework for blind deconvolution inversion problems: 72nd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstract.
[3] Curry, W., 2003, Interpolation of irregularly-sampled data with non-stationary, multi-scale prediction-error filters: 73rd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1913-1916.
[4] Dondurur, D., 2010, An approximation to sparse-spike reflectivity using the gold econvolution method: Pure and Applied Geophysics, 167, 1233-1245.
[5] Griffiths, L. J., Smolka, F. R., and Trembly, L. D., 1977, Adaptive deconvolution: A new technique for processing time-varying seismic data: Geophysics, 42, 742-759.
[6] Guitton, A., 2004, Amplitude and kinematic corrections of migrated images for nonunitary imaging operators: Geophysics, 69(4), 1017-1024.
[7] Hargreaves, N. D., and Calvert A. J., 1991, Inverse Q filtering by Fourier transform: Geophysics, 56, 519-527.
[8] Ismail, S., 2008, Nonstationary filters: PhD. Thesis, University of Calgary, 2008.
[9] Kjartansson, E., 1979, Constant Q-wave propagation and attenuation: Journal of Geophysical Research, 84, B9, 4737-4748.
[10] Koehler, F., and Taner, M. T., 1985, The use of the conjugate-gradient algorithm in the computation of predictive deconvolution operators: Geophysics, 50, 2752-2758.
[11] Lazear, G. D., 1993, Mixed phase wavelet estimation using fourth order cumulants: Geophysics, 58, 1042-1051.
[12] Levy, S., and Oldenburg, D. W., 1987, Automatic phase correction of common-midpoint stacked data: Geophysics, 52, 51-59.
[13] Longbottom, J., Walden, A. T., and White, R. E., 1988, Principles and application of maximum kurtosis phase estimation: Geophysical Prospecting, 36, 115-138.
[14] Ma, Y., and Margrave, G. F., 2008, Seismic depth imaging with the Gabor transform: Geophysics, 73(3), S91-S97.
[15] Margrave, G. F., 1998, Theory of nonstationary linear filtering in Fourier domain with application to time-variant filtering: Geophysics, 63, 244-259.
[16] Margrave, G. F., Henley, D. C., and Lamoureux, M. P., et al., 2003, Gabor deconvolution revisited: 73th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstract, 714-717.
[17] Margrave, G. F., Lamoureux, M. P., and D. C. Henley, 2011, Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data: Geophysics, 76, W15-W30.
[18] Margrave, G. F., Lamoureux, M. P., Grossman, J. P., and Iliescu, V., 2002, Gabor deconvolution of seismic data for source waveform and Q correction: 72nd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 2190-2193.
[19] Montana, C. A., and Margrave, G. F., 2005, Phase correction in Gabor deconvolution: 75th Annual International Meeting, Expanded Abstracts, 2173-2176.
[20] O’Doherty, R. F., and Anstey, N. A., 1971, Reflections on amplitudes: Geophysical Prospecting, 19, no. 3, 430-458.
[21] Rosa, A. L. R., and Ulrych, T. J., 1991, Processing via spectral modeling: Geophysics, 56, 1244-1251.
[22] Sacchi, M. D., 1997, Reweighting strategies in seismic deconvolution: Geophys. J. Int., 129, 651-656.
[23] Sun, X. K., Sun, Z. D., and Peng, T. et al., 2012, Gabor Deconvolution: Hyperbolic Smoothing in Logarithmic Magnitude Spectrum: 82nd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstract, 2012.
[24] Sun, X. K., Sun, Z. D., and Zhou, X. Y., et al., 2013, Gabor deconvolution based on hyperbolic smoothing in log spectra: 75th EAGE Conference & Exhibition, Extended Abstract.
[25] Sun, Z. D., Yang, H., and Zhang, Y. et al., 2011, The application of amplitude-preserved processing and migration for carbonate reservoir prediction in the Tarim Basin, China: Petroleum Science, 8, 406-413.
[26] Van der Baan, M., and Pham, D.T., 2008, Robust wavelet estimation and blind deconvolution of noisy surface seismic: Geophysics, 73, V37-V46.
[27] Velis, D. R., 2008, Stochastic sparse-spike deconvolution: Geophysics, 73(1), R1-R9.
[28] Walden, A. T., and Hosken, J. W. J., 1986, The nature of the non-Gaussianity of primary reflection coefficients and its significance for deconvolution: Geophysical Prospecting, 34, 1038-1066.
[29] Wang, Y., 2006, Inverse Q-filter for seismic resolution enhancement: Geophysics, 71, V51-V60.
[30] Wiggins, R., 1978, Minimum entropy deconvolution: Geoexploration, 16, 21-35.
[31] Liu, G. C., 2012, Theory and Application of Nonstationary Filtering in Seismic Data Analysis: Doctor Thesis, China University of Petroleum (Beijing).
[32] Liu, X. W., Ning, J. C., and Zhang, G. L., 2009, Cauchy sparse constrained Bayesian estimation based seismic blind deconvolution frame and algorithm: Geophysical Prospecting for Petroleum, 48(5), 459-464.
[33] Zhang, F. C., Liu, J., Ying, X. Y., and Yang, P. J., 2008, Modified Cauchy-constrained seismic blind deconvolution: Oil Geophysical Prospecting, 43(4), 391-396.
[1] Li Hao, Li Guo-Fa, Guo Xiang-Hui, Sun Xi-Ping, and Wang Jian-Fu. Nonstationary inversion-based directional deconvolution of airgun array signature*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 124-132.
[2] Wu Shao-Jiang, Wang Yi-Bo, Ma Yue, Chang Xu. Super-resolution least-squares prestack Kirchhoff depth migration using the L0-norm[J]. APPLIED GEOPHYSICS, 2018, 15(1): 69-77.
[3] Zhang Jun-Hua, Zhang Bin-Bin, Zhang Zai-Jin, Liang Hong-Xian, Ge Da-Ming. Low-frequency data analysis and expansion[J]. APPLIED GEOPHYSICS, 2015, 12(2): 212-220.
[4] LI Fang, WANG Shou-Dong, CHEN Xiao-Hong, LIU Guo-Chang, ZHENG Qiang. Prestack nonstationary deconvolution based on variable-step sampling in the radial trace domain[J]. APPLIED GEOPHYSICS, 2013, 10(4): 423-432.
[5] WANG Han-Chuang, CHEN Sheng-Chang, ZHANG Bo, SHE De-Ping. Separation method for multi-source blended seismic data[J]. APPLIED GEOPHYSICS, 2013, 10(3): 251-264.
[6] LIU Guo-Chang, CHEN Xiao-Hong, LI Jing-Ye, DU Jing, SONG Jia-Wen. Seismic noise attenuation using nonstationary polynomial fitting[J]. APPLIED GEOPHYSICS, 2011, 8(1): 18-26.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn