APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2014, Vol. 11 Issue (4): 437-446    DOI: 10.1007/s11770-014-0458-9
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain
Du Qi-Zhen1, Zhang Ming-Qiang1, Chen Xiao-Ran1, Gong Xu-Fei1, and Guo Cheng-Feng1
1. School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong 266580.
 Download: PDF (824 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Wavefield separation of multicomponent seismic data to image subsurface structures can be realized in either the space domain or the wavenumber domain. However, as the particle velocity components used in the wavenumber-domain wavefield separation are not defined at the same grid point with the staggered-grid finite-difference method for elastic wavefield simulation, we propose the wavenumber-domain interpolation method to estimate the required values at the common grid points prior to the wavenumber-domain true-amplitude wavefield separation. Moreover, numerical experiments show that the wavenumber-domain interpolation method has high interpolation accuracy and the true-amplitude wavefield separation method shows good amplitude preservation. The application of the proposed methodology to elastic reverse-time migration can obtain good amplitude-preserved images even in the case of some velocity error.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
DU Qi-Zhen
ZHANG Ming-Qiang
CHEN Xiao-Ran
GONG Xu-Fei
GUO Cheng-Feng
Key wordswavefield separation   amplitude preservation   staggered-grid finite difference   wavenumber domain interpolation   reverse-time migration     
Received: 2013-11-16;
Fund:

This work is supported by the National Science Foundation of China (No. 41174100), the Large-scale Oil and Gas Field and Coalbed Methane Development Major Projects (No. 2011ZX05019-008-08), and the China National Petroleum Corporation (No. 2014A-3609).

Cite this article:   
DU Qi-Zhen,ZHANG Ming-Qiang,CHEN Xiao-Ran et al. True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain[J]. APPLIED GEOPHYSICS, 2014, 11(4): 437-446.
 
[1] Aki, K., and Richards, P. G., 2002, Quantitative Seismology (2nd ed). California: University Science Books.
[2] Chattopadhyay, S., and McMechan, G. A., 2008, Imaging conditions for prestack reverse-time migration: Geophysics, 73(3), S81-S89.
[3] Dellinger, J., 1991, Anisotropic Seismic Wave Propagation [Doctor’s thesis]. California: Stanford University, 65-69.
[4] Dellinger, J., and Etgen, J., 1990, Wavefield separation in two-dimensional anisotropic media: Geophysics, 55(7), 914-919.
[5] Devaney, A. J., Oristagliot, M. L., 1986, A plane-wave decomposition for elastic wave fields applied to the separation of P-waves and S-waves in vector seismic data: Geophysics, 51(2), 419-423.
[6] Dong, L. G., Ma Z. T., Cao, J. Z., Wang, H. Z., Geng, J. H., Lei, B., and Xu, S. Y., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese J. Geophys (in Chinese), 43(3), 411-419.
[7] Du, Q., Gong, X., Zhang, M., Zhu, Y. T., and Fang, G., 2014, 3D PS-wave imaging with elastic reverse-time migration: Geophysics, 79(5), S173-S184.
[8] Du, Q. Z., Zhu, Y. T., and Ba, J., 2012, Polarity reversal correction for elastic reverse time migration: Geophysics, 77(2), S31-S41.
[9] Etgen, J. T., 1988, Prestacked migration of P- and SV-waves: 58th Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 972-975.
[10] Feng, X., Zhang, X. W., Liu, C., Wang, D., and Yang, Q. J., 2011, Separating P-P and P-SV wave by parabolic Radon transform with multiple coherence: Chinese J. Geophys (in Chinese), 54(2), 304-309.
[11] Li, Z. Y., Liang, G. H., and Gu, B. L., 2013, Improved method of separating P- and S-waves using divergence and curl: Chinese J. Geophys (in Chinese), 56(6), 2012-2022.
[12] Liu, Y., 2014, Optimal staggered-grid finite-difference schemes based on least squares for wave equation modeling: Geophysical Journal International,197(2), 1033-1047.
[13] Madariaga, R., 1976, Dynamics of an expanding circular fault: Bull. Seismol. Soc. Am., 66(3), 639-666.
[14] Martin, G. S., Wiley, R., and Marfurt, K. J., 2006, Marmousi2: An elastic upgrade for Marmousi: The Leading Edge, 25, 156-166.
[15] Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R. J., and Halada, L., 2002, 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume and arithmetic averaging of elastic moduli and densities: Bull. Seismol. Soc. Am., 92(8), 3042-3066.
[16] Oristaglio, M. L., Devany, A. J., and Track, A., 1985, Separation of P-waves and S-waves in borehole seismic data: 55th Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 52-55.
[17] Schleicher, J., Costa, J. C., and Novais, A., 2008, A comparison of imaging conditions for wave-equation shot-profile migration: Geophysics, 73(6), S219-S227.
[18] Sun, R., 1999, Separating P- and S-waves in a prestack 2-dimensional elastic seismogram: 61th EAGE Conference & Exhibition, Extended Abstracts, 6-23.
[19] Sun, R., Chow, J. D., and Chen, K. J., 2001, Phase correction in separating P- and S-waves in elastic data: Geophysics, 66(5), 1515-1518.
[20] Sun, R., McMechan, G. A., and Chuang, H. H., 2011, Amplitude balancing in separating P- and S-waves in 2D and 3D elastic data: Geophysics, 76(3), S103-S113.
[21] Sun, R., McMechan, G. A., Hsiao, H. S., and Chow, J., 2004, Separating P- and S-waves in prestack 3D elastic seismograms using divergence and curl: Geophysics, 69(1), 286-297.
[22] Virieux, J., 1984, SH-wave propagation in heterogeneous media: velocity-stress finite-difference method: Geophysics, 49(11), 1933-1957.
[23] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite difference method: Geophysics, 51(4), 889-901.
[24] Yan, J., and Sava, P., 2009a, Elastic wave-mode separation for VTI media: Geophysics, 74(5), WB19-WB32.
[25] Yan, J., and Sava, P., 2009b , Elastic wave mode separation for TTI media: 79th Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1197-1021.
[26] Yan, J., and Sava, P., 2009c, 3D elastic wave mode separation for TTI media: 79th A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 4294-4298.
[27] Yao, D. Z., Zhou, X. X., and Zhong, B. S., 1993, Method for separating out P-wave or S-wave in VSP data and its application: OGP (in Chinese), 28(5), 623-628.
[28] Yoon, K., and Marfurt, K. J., 2006, Reverse-time migration using the Poynting vector: Exploration Geophysics, 37(1), 102-107.
[29] Zhang, G. Q., and Zhou, H. B., 1995, Separating compressional wave from shear wave in surface seismic records: OGP (in Chinese), 30(2), 181-191.
[30] Zhang, M., Du, Q. Z., Fang, G., Gong, X. F., and Zhu, Y. T., 2013, Phase correction of elastic reverse time migration section: 83rd Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1713-1717.
[31] Zhang, Q. S., and McMechan, G. A., 2010, 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media: Geophysics, 75(3), D13-D26.
[32] Zhang, Y., and Sun, J., 2009, Practical issues of reverse time migration: True-amplitude gathers, noise removal and harmonic-source encoding: First Break, 27(1), 53-60.
[1] Liu Guo-Feng, Meng Xiao-Hong, Yu Zhen-Jiang, and Liu Ding-Jin. An efficient scheme for multi-GPU TTI reverse time migration*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 61-69.
[2] Gong Hao, Chen Hao, He Xiao, Su Chang, Wang Xiu-Ming, Wang Bai-Cun, and Yan Xiao-Hui. Modeling and inversions  of acoustic  reflection logging imaging using the combined monopole–dipole measurement mode[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 393-400.
[3] Xue Hao and Liu Yang. Reverse-time migration using multidirectional wavefield decomposition method[J]. APPLIED GEOPHYSICS, 2018, 15(2): 222-233.
[4] Sun Xiao-Dong, Jia Yan-Rui, Zhang Min, Li Qing-Yang, and Li Zhen-Chun. Least squares reverse-time migration in the pseudodepth domain and reservoir exploration[J]. APPLIED GEOPHYSICS, 2018, 15(2): 234-239.
[5] Ren Ying-Jun, Huang Jian-Ping, Yong Peng, Liu Meng-Li, Cui Chao, and Yang Ming-Wei. Optimized staggered-grid finite-difference operators using window functions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 253-260.
[6] Yang Jia-Jia, Luan Xi-Wu, He Bing-Shou, Fang Gang, Pan Jun, Ran Wei-Min, Jiang Tao. Extraction of amplitude-preserving angle gathers based on vector wavefield reverse-time migration[J]. APPLIED GEOPHYSICS, 2017, 14(4): 492-504.
[7] Sun Xiao-Dong, Li Zhen-Chun, Jia Yan-Rui. Variable-grid reverse-time migration of different  seismic survey data[J]. APPLIED GEOPHYSICS, 2017, 14(4): 517-522.
[8] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[9] Sun Xiao-Dong, Ge Zhong-Hui, Li Zhen-Chun. Conjugate gradient and cross-correlation based least-square reverse time migration and its application[J]. APPLIED GEOPHYSICS, 2017, 14(3): 381-386.
[10] Kong Xue, Wang De-Ying, Li Zhen-Chun, Zhang Rui-Xiang, Hu Qiu-Yuan. Diffraction separation by plane-wave prediction filtering[J]. APPLIED GEOPHYSICS, 2017, 14(3): 399-405.
[11] Sun Xiao-Dong, Ge Zhong-Hui, Li Zhen-Chun, Hong Ying. The stability problem of reverse time migration for viscoacoustic VTI media[J]. APPLIED GEOPHYSICS, 2016, 13(4): 608-613.
[12] Yang Jia-Jia, Luan Xi-Wu, Fang Gang, Liu Xin-Xin, Pan Jun, Wang Xiao-Jie. Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation[J]. APPLIED GEOPHYSICS, 2016, 13(3): 500-510.
[13] Zhang Gong, Li Ning, Guo Hong-Wei, Wu Hong-Liang, Luo Chao. Fracture identification based on remote detection acoustic reflection logging[J]. APPLIED GEOPHYSICS, 2015, 12(4): 473-481.
[14] Liu Qiang, Han Li-Guo, Chen Jing-Yi, Chen Xue, Zhang Xian-Na. Separation of inhomogeneous blended seismic data[J]. APPLIED GEOPHYSICS, 2015, 12(3): 327-333.
[15] Cai Xiao-Hui, Liu Yang, Ren Zhi-Ming, Wang Jian-Min, Chen Zhi-De, Chen Ke-Yang, Wang Cheng. Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme[J]. APPLIED GEOPHYSICS, 2015, 12(3): 409-420.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn