APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2014, Vol. 11 Issue (4): 355-363    DOI: 10.1007/s11770-014-0464-y
article Current Issue | Next Issue | Archive | Adv Search  |  Next Articles  
Viscoelastic characteristics of low-frequency seismic wave attenuation in porous media
Ling Yun1, Han Li-Guo1, and Zhang Yi-Ming2
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. CNOOC Research Institute, Beijing 100027, China.
 Download: PDF (714 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Mesoscopic fluid flow is the major cause of wave attenuation and velocity dispersion at seismic frequencies in porous rocks. The Johnson model provides solutions for the frequency-dependent quality factor and phase velocity in partially saturated porous media with pore patches of arbitrary shapes. We use the Johnson model to derive approximations for the quality factor Q at the high and low frequency limit, and obtain the approximate equation for Qmin based on geophysical and geometric parameters. A more accurate equation for Qmin is obtained after correcting for the linear errors between the exact and approximate Q values. The complexity of the pore patch shape affects the maximum attenuation of Qmin and the transition frequency ftr; furthermore, the effect on ftr is stronger than that on Qmin. Numerical solutions to Biot’s equation are computationally intensive; thus, we build an equivalent viscoelastic model on the basis of the Zener model, which well approximates the wave attenuation and dispersion in porous rocks in the seismic band.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LING Yun
HAN Li-Guo
ZHANG Yi-Ming
Key wordsMesoscopic scale   johnson model   attenuation   velocity dispersion   zener model     
Received: 2014-07-18;
Fund:

This research is sponsored by the National Science and Technology Major Project (Grant No. 2011ZX05025-001-07).

Cite this article:   
LING Yun,HAN Li-Guo,ZHANG Yi-Ming. Viscoelastic characteristics of low-frequency seismic wave attenuation in porous media[J]. APPLIED GEOPHYSICS, 2014, 11(4): 355-363.
 
[1] Batzle, M., Han, D., and Hofmann, R., 2006, Fluid mobility and frequency-dependent seismic velocity-Direct measurements: Geophysics, 71(1), N1-N9.
[2] Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range The Journal of the Acoustical Society of America, 28(2), 168-178.
[3] Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher-frequency range: Acoustical Society of America Journal, 28, 179-191.
[4] Carcione, J. M., 2007, Wave fields in real media: theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media: Elsevier.
[5] Carcione, J. M., and Picotti, S., 2006, P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties: Geophysics, 71(3), O1-O8.
[6] Dutta, N. C., and Odé, H., 1979, Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model)-Part I: Biot theory: Geophysics, 44(11), 1777-1788.
[7] Hill, R., 1964, Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior: Journal of the Mechanics and Physics of Solids, 12(4), 199-212.
[8] Johnson, D. L., 2001, Theory of frequency dependent acoustics in patchy-saturated porous media: The Journal of the Acoustical Society of America, 110, 682-694.
[9] Müller, T. M., Gurevich, B., and Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review: Geophysics, 75(5), 75A147-175A164.
[10] Picotti, S., Carcione, J. M., Germán R. J., and Santos, J. E., 2007, P-wave seismic attenuation by slow-wave diffusion: Numerical experiments in partially saturated rocks: Geophysics, 72(4), N11-N21.
[11] Picotti, S., Carcione, J. M., Rubino, J. G., Santos, J. E., and Cavallini, F., 2010, A viscoelastic representation of wave attenuation in porous media: Computers and Geosciences, 36(1), 44-53.
[12] Pride, S. R., and Berryman, J. G., 2003, Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation: Physical Review E, 68(3), 036603.
[13] Pride, S. R., Berryman, J. G., and Harris, J. M., 2004, Seismic attenuation due to wave-induced flow: Journal of Geophysical Research, 109(B1), B01201.
[14] Quintal, B., Schmalholz, S. M., and Podladchikov, Y. Y., 2008, Low-frequency reflections from a thin layer with high attenuation caused by interlayer flow: Geophysics, 74(1), N15-N23.
[15] Wang, S. X., Zhao, J. G., Li, Z. H., Harris, J. M., and Quan, Y. L., 2012, Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range: Journal of Geophysical Research: Solid Earth, 117(B6), B06203.
[16] White, J. E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40(2), 224-232.
[17] White, J. E., Mikhaylova, N. G., and Lyakhovitskiy, F. M., 1976, Low-frequency seismic waves in fluid saturated layered rocks: Physics of the Solid Earth, 11, 654-659.
[18] Wood, A. B., 1955, A Textbook of sound: The physics of vibrations: G. Bell and Sons Ltd., London.
[19] Zhao, J. G., Tang, G. Y., Deng, J. X., Tong, X. L., and Wang, S. X., 2013, Determination of rock acoustic properties at low frequency: A differential acoustical resonance spectroscopy device and its estimation technique: Geophysical Research Letters, 40(12), 2975-2982.
[1] Ma Ru-Peng, Ba Jing, Carcione José Maria, Zhou Xin, and Li Fan. Dispersion and attenuation of compressional waves in tight oil reservoirs: Experiments and simulations*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 36-49.
[2] Wang En-Jiang, Liu Yang, Ji Yu-Xin, Chen Tian-Sheng, and Liu Tao. Q full-waveform inversion based on the viscoacoustic equation*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 83-98.
[3] . Seismic prediction method of multiscale fractured reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(2): 240-252.
[4] Guo Gui-Hong, Yan Jian-Ping, Zhang Zhi, José Badal, Cheng Jian-Wu, Shi Shuang-Hu, and Ma Ya-Wei. Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
[5] Li Chang-Zheng, Yang Yong, Wang Rui, Yan Xiao-Fei. Acoustic parameters inversion and sediment properties in the Yellow River reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(1): 78-90.
[6] Zhao Yu-Min, Li Guo-Fa, Wang Wei, Zhou Zhen-Xiao, Tang Bo-Wen, Zhang Wen-Bo. Inversion-based data-driven time-space domain random noise attenuation method[J]. APPLIED GEOPHYSICS, 2017, 14(4): 543-550.
[7] Wang Wan-Li, Yang Wu-Yang, Wei Xin-Jian, He Xin. Ground roll wave suppression based on wavelet frequency division and radial trace transform[J]. APPLIED GEOPHYSICS, 2017, 14(1): 96-104.
[8] He Yi-Yuan, Hu Tian-Yue, He Chuan, Tan Yu-Yang. P-wave attenuation anisotropy in TI media and its application in fracture parameters inversion[J]. APPLIED GEOPHYSICS, 2016, 13(4): 649-657.
[9] Liu Xue-Qing, Wang Yan-Chun, Zhang Gui-Bing, Ma Sheng-Li, Cheng Li-Fang, Yu Wen-Wu. Calculation method of prestack FAGVO and its applications[J]. APPLIED GEOPHYSICS, 2016, 13(4): 641-648.
[10] . Seismic dynamic monitoring in CO2 flooding based on characterization of frequency-dependent velocity factor[J]. APPLIED GEOPHYSICS, 2016, 13(2): 307-314.
[11] Seyyed Ali Fa’al Rastegar, Abdolrahim Javaherian, Naser Keshavarz Farajkhah. Ground-roll attenuation using modified common-offset–common-reflection-surface stacking[J]. APPLIED GEOPHYSICS, 2016, 13(2): 353-363.
[12] Gan Shu-Wei, Wang Shou-Dong, Chen Yang-Kang, Chen Jiang-Long, Zhong Wei, Zhang Cheng-Lin. Improved random noise attenuation using f–x empirical mode decomposition and local similarity[J]. APPLIED GEOPHYSICS, 2016, 13(1): 127-134.
[13] An Yong. Fracture prediction using prestack Q calculation and attenuation anisotropy[J]. APPLIED GEOPHYSICS, 2015, 12(3): 432-440.
[14] Guo Zhi-Qi, Liu Xi-Wu, Fu Wei, Li Xiang-Yang. Modeling and analysis of azimuthal AVO responses from a viscoelastic anisotropic reflector[J]. APPLIED GEOPHYSICS, 2015, 12(3): 441-452.
[15] Zhang Qian-Jiang, Dai Shi-Kun, Chen Long-Wei, Li Kun, Zhao Dong-Dong, Huang Xing-Xing. Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography[J]. APPLIED GEOPHYSICS, 2015, 12(3): 378-388.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn