APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2011, Vol. 8 Issue (2): 164-169    DOI: 10.1007/s11770-011-0282-4
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
A study of wavelet transforms applied for fracture identifi cation and fracture density evaluation
Zhang Xiao-Feng1, Pan Bao-Zhi1, Wang Fei1, and Han Xue1
1. College of GeoExplaration Science and Technology, Jilin University, Changchun 130026, China.
 Download: PDF (522 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea. In this paper, we first compute the mother wavelet transform of conventional logs and the wavelet decomposed signals are compared with fractures identified from image logs to determine the fracture-matched mother wavelet.Then the mother wavelet-based decomposed signal combined with the differential curves of conventional well logs create a fracture indicator curve, identifying the fractured zone.Finally the fracture density can be precisely evaluated by the linear relationship of the indicator curve and image log fracture density. This method has been successfully used to evaluate igneous reservoir fractures in the southern Songnan basin and the calculated density from the indicator curve and density from image logs are both basically consistent.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHANG Xiao-Feng
PAN Bao-Zhi
WANG Fei
HAN Xue
Key wordsWavelet transform   fracture identification   differential curves   fracture density     
Received: 2010-09-15;
Fund:

This research is sponsored by National Science and Technology Major Project of China (No. 2008 ZX 05009-001).

About author: Zhang Xiao-Feng is a PhD student in the College of GeoExplaration Science and Technology of Jilin University.His research interest is application of geophysical logging.
Cite this article:   
ZHANG Xiao-Feng,PAN Bao-Zhi,WANG Fei et al. A study of wavelet transforms applied for fracture identifi cation and fracture density evaluation[J]. APPLIED GEOPHYSICS, 2011, 8(2): 164-169.
 
[1] Dutta, P., Singh, S. K., Al-Genai, J., Akhtar, A., and Akbar, M., 2007, A novel approach to fracture characterization utilizing borehole seismic data: 15th SPE Middle East Oil &Gas Show and Conference, Bahrain, Paper SPE 105427 (6 pp).
[2] 葛哲学, 陈仲生, 2006, Matlab时频分析技术及其应用: 人民邮电出版社, 北京, 9 - 10.
[3] 高伟, 王允诚, 徐静, 伍国勇, 冯雪龙, 2008, 小波分析在测井裂缝识别中的应用: 西南石油大学学报, 30(1), 51 - 53.
[4] Li, N., Wu, H. L., Feng, Q. F., Wang, K. W., Shi, Y. J., Li, Q. F., and Luo, X. P., 2009, Matrix porosity calculation in volcanic and dolomite reservoirs and its application: Applied Geophysics, 6(3), 287 - 298.
[5] Mohebbi, A. R., Haghighi, M., and Sahimi, M., 2007, Using conventional logs for fracture detection and characterization in one of Iranian field: International Petroleum Technology Conference held in Dubai, UAE., Paper IPTC 11186.
[6] Pan, B. Z., Xue, L. F., Huang, B. Z., Yan, G. J., and Zhang, L. H., 2008, Evaluation of volcanic reservoirs with the “QAPM mineral model” using a genetic algorithm: Applied Geophysics, 5(1), 1 - 8.
[7] 潘保芝, 薛林福, 李舟波, 吴海波, 2003, 裂缝性火成岩储层测井评价方法与应用: 石油工业出版社, 北京, 45 - 46.
[8] Sahimi, M., and Hashemi, M., 2001, Wavelet identification of the spatial distribution of fractures: Geophys. Reserv. Lett., 28(4), 611 - 614.
[9] 孙建孟, 刘蓉, 梅基席, 申辉林, 青海柴西地区常规测井裂缝识别方法: 测井技术, 1999, 23(4), 268 - 272.
[10] Tokhmechi, B., Memarian, H., Rasouli, V., Ahmadi, H., Noubari, A., and Moshir, B., 2009, Fracture detection from water saturation log data using a Fourier-wavelet approach: Journal of Petroleum Science and Engineering, 69, 129 - 138.
[11] 王允诚, 1992, 裂缝性致密油气储集层: 石油工业出版社, 北京, 117 - 120.
[12] Wu, Q. L., Zhao, H. B., Li, L. L., and Fan, X. C., 2008, Analysis of rock physics response of gas-bearing volcanic reservoir based on three-phase poroelastic theory: Applied Geophysics, 5(4), 277 - 283.
[13] Yue, W. Z., and Tao, G., 2006, A new method for reservoir fluid identification: Applied Geophysics, 3(2), 124 - 129.
[1] Sun Si-Yuan, Yin Chang-Chun, Gao Xiu-He, Liu Yun-He, and Ren Xiu-Yan. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(2): 342-352.
[2] Ji Zhan-Huai, Yan Sheng-Gang. Properties of an improved Gabor wavelet transform and its applications to seismic signal processing and interpretation[J]. APPLIED GEOPHYSICS, 2017, 14(4): 529-542.
[3] Kong Xuan-Lin, Chen Hui, Wang Jin-Long, Hu Zhi-quan, Xu Dan, Li Lu-Ming. An amplitude suppression method based on the decibel criterion[J]. APPLIED GEOPHYSICS, 2017, 14(3): 387-398.
[4] Xu Xiao-Hong, Qu Guang-Zhong, Zhang Yang, Bi Yun-Yun, Wang Jin-Ju. Ground-roll separation of seismic data based on morphological component analysis in two-dimensional domain[J]. APPLIED GEOPHYSICS, 2016, 13(1): 116-126.
[5] Song Li-Rong, Yu Chang-Qing, Li Gui-Hua, Feng Yang-Yang, He Jun-Jie. Characteristics of gravity anomalies and prediction of volcanosedimentary boron deposit distribution in the Xiongba area, Tibet[J]. APPLIED GEOPHYSICS, 2015, 12(4): 516-522.
[6] Liu Qiang, Han Li-Guo, Chen Jing-Yi, Chen Xue, Zhang Xian-Na. Separation of inhomogeneous blended seismic data[J]. APPLIED GEOPHYSICS, 2015, 12(3): 327-333.
[7] LONG Yun, HAN Li-Guo, HAN Li, TAN Chen-Qing. L1 norm optimal solution match processing in the wavelet domain[J]. APPLIED GEOPHYSICS, 2012, 9(4): 451-458.
[8] WANG Jun, CHEN Yu-Hong, XU Da-Hua, QIAO Yu-Lei. Structure-oriented edge-preserving smoothing based on accurate estimation of orientation and edges[J]. APPLIED GEOPHYSICS, 2009, 6(4): 337-346.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn