APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2009, Vol. 6 Issue (3): 241-247    DOI: 10.1007/s11770-009-0028-8
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Adaptive multiple subtraction using a constrained L1-norm method with lateral continuity
Pang Ting-Hua1, Lu Wen-Kai1, and Ma Yong-Jun1,2

1. State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.
2. Department of Electronic Engineering, Jiujiang Vocational and Technical Collage, Jiujiang 332007, China.

 Download: PDF (796 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The L1-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
PANG Ting-Hua
LU Wen-Kai
MA Yong-Jun
Key wordsMultiple attenuation   adaptive multiple subtraction   L1-norm   lateral continuity     
Received: 2009-04-01;
Fund:

This work is sponsored by National Natural Science Foundation of China (No. 40874056), Important National Science & Technology Specific Projects 2008ZX05023-005-004, and the NCET Fund.

Cite this article:   
PANG Ting-Hua,LU Wen-Kai,MA Yong-Jun. Adaptive multiple subtraction using a constrained L1-norm method with lateral continuity[J]. APPLIED GEOPHYSICS, 2009, 6(3): 241-247.
 
[1] Al-Yahya, K., 1989, Velocity analysis by iterative profile migration: Geophysical Prospecting, 54(7), 718 - 729.
[2] Abma, R., and Claerbout, J., 1995, Lateral prediction for noise attenuation by T-X and F-X techniques: Geophysics, 60, 1887 - 1896.
[3] Backus, M. M., 1959, Water reverberations: their nature and elimination: Geophysics, 24(2), 233 - 261.
[4] Brown, M., and Clapp, R., 2000, T-x domain, pattern-based ground roll removal: 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2103 - 2106.
[5] Bube, K. P., and Langan, R. T., 1997, Hybrid L1/L2 minimization with applications to tomography: Geophysics, 62(4), 1183 - 1195.
[6] Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67 (12), 1946 - 1960.
[7] Fomel, S., 2009, Adaptive multiple subtraction using regularized nonstationary regression: Geophysics, 74(1), 25 - 33.
[8] Foster, D. J., 1992, Suppression of multiple reflections using the Radon transform: Geophysics, 57(3), 386 - 395.
[9] Gersztenkorn, A., Bednar, J. B., and Lines, L. R., 1986, Robust iterative inversion for the one-dimensional acoustic wave equation: Geophysics, 51, 357 - 368.
[10] Guitton, A., 2002, Coherent noise attenuation using inverse problems and prediction-error filters: First Break, 20, 161 - 167.
[11] Guitton, A., 2005, Multiple attenuation in complex geology with a pattern-based approach: Geophysics, 70(4), V97 - V107.
[12] Guitton, A., and Cambois, G., 1998, Prestack elimination of complex multiples, A Gulf of Mexico subsalt example: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1329 - 1332 .
[13] Guitton, A., and Verschuur, D. J., 2004, Adaptive subtraction of multiples using the L1-norm: Geophysical Prospecting, 52(1), 27 - 38.
[14] Liu, J., and Lu, W. K., 2008, An improved predictive deconvolution based on maximization of non-Gaussianity: Applied Geophysics, 5(3), 189 - 196.
[15] Lu, W. K., 2006, Adaptive multiple subtraction using independent component analysis: Geophysics, 71(5), S179 - S184.
[16] Lu, W. K., and Liu, L., 2009, Adaptive multiple subtraction based on constrained independent component analysis: Geophysics, 74(1), V1 - V7.
[17] Lu, W. K., Luo, Y., Zhao, B., and Qian, Z. P., 2004, Adaptive multiple wave subtraction using independent component analysis: Chinese Journal of Geophysics, 47, 886 - 891.
[18] Lu, W. K., and Mao, F., 2005, Adaptive multiple subtraction using independent component analysis: The Leading Edge, 24(3), 282 - 284.
[19] Luo, Y., Kelamis, P. G., and Wang, Y., 2003, Simultaneous inversion of multiples and primaries: inversion versus subtraction: The Leading Edge, 22(9), 814 - 818.
[20] Manin, M., and Spitz, S., 1995, 3D attenuation of targeted multiples with a pattern recognition technique: 57th Ann. Internat. Mtg., Eur. Assoc. of Geosc. and Eng., Extended Abstracts, B046.
[21] Morley, L., 1983, Predictive deconvolution in short-receiver space: Geophysics, 48(5), 515 - 531.
[22] Roberts, S., and Everson, R., 2001, Independent component analysis: Principle and practice: Cambridge University Press.
[23] Robinson, E. A., 1967, Principles of digital Wiener filtering: Geophysical Prospecting, 15(3), 311 - 333.
[24] Verschuur, D. J., Berkhout, A. J., and Wapenaar, C. P. A., 1992, Adaptive surface-related multiple elimination: Geophysics, 57, 1166 - 1177.
[25] Wang, Y., 2003, Multiple subtraction using an expanded multichannel matching filter: Geophysics, 68(11), 346 - 354.
[26] Weglein, A. B., 1999, Multiple attenuation: an overview of recent advances and the road ahead: The Leading Edge, 18(1), 40 - 44.
[27] Wiggins, J. W., 1988, Attenuation of complex water-bottom multiples by wave equation based prediction and subtraction: Geophysics, 53(12), 1527 - 1539.
[28] Yilmaz, O., 1989, Velocity stack processing: Geophysical Prospecting, 37(4), 357 - 382.
[1] CAI Rui, ZHAO Qun, SHE De-Ping, YANG Li, CAO Hui, YANG Qin-Yong. Bernoulli-based random undersampling schemes for 2D seismic data regularization[J]. APPLIED GEOPHYSICS, 2014, 11(3): 321-330.
[2] LI Zhi-Na, LI Zhen-Chun, WANG Peng, XU Qiang. Multiple attenuation using λ–f domain high-resolution Radon transform[J]. APPLIED GEOPHYSICS, 2013, 10(4): 433-441.
[3] LONG Yun, HAN Li-Guo, HAN Li, TAN Chen-Qing. L1 norm optimal solution match processing in the wavelet domain[J]. APPLIED GEOPHYSICS, 2012, 9(4): 451-458.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn