APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2014, Vol. 11 Issue (1): 50-62    DOI: 10.1007/s11770-014-0414-8
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Viscoacoustic prestack reverse time migration based on the optimal time–space domain high-order finite-difference method
Zhao Yan1,2, Liu Yang1,2, and Ren Zhi-Ming1,2
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
 Download: PDF (987 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Prestack reverse time migration (RTM) is an accurate imaging method of subsurface media. The viscoacoustic prestack RTM is of practical significance because it considers the viscosity of the subsurface media. One of the steps of RTM is solving the wave equation and extrapolating the wave field forward and backward; therefore, solving accurately and efficiently the wave equation affects the imaging results and the efficiency of RTM. In this study, we use the optimal time–space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis and numerical simulations show that the optimal time–space domain FD method is more accurate and suppresses the numerical dispersion. We use hybrid absorbing boundary conditions to handle the boundary reflection. We also use source-normalized cross-correlation imaging conditions for migration and apply Laplace filtering to remove the low-frequency noise. Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imaging resolution than the acoustic wave equation RTM when the viscosity of the subsurface is considered. In addition, for the wave field extrapolation, we use the adaptive variable-length FD operator to calculate the spatial derivatives and improve the computational efficiency without compromising the accuracy of the numerical solution.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHAO Yan
LIU Yang
REN Zhi-Ming
Key wordsReverse time migration   Viscoacoustic   Optimization   Adaptive   Time–space domain finite-difference     
Fund:

Reverse time migration|Viscoacoustic|Optimization|Adaptive|Time–space domain finite-difference

Cite this article:   
ZHAO Yan,LIU Yang,REN Zhi-Ming. Viscoacoustic prestack reverse time migration based on the optimal time–space domain high-order finite-difference method[J]. APPLIED GEOPHYSICS, 2014, 11(1): 50-62.
 
[1] Bickel, S. H., and Natarajan, R. R., 1985, Plane-wave Q deconvolution: Geophysics, 50(9), 1426 - 1439.
[2] Carcione, J. M., Kosloff, D., and Kosloff, R., 1988, Viscoacoustic wave propagation simulation in the earth: Geophysics, 53(6), 769 - 777.
[3] Cavalca, M., Fletcher, R., and Riedel, M., 2013, Q-compensation in complex media-Ray-based and wavefield extrapolation approaches: 83th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 3831 - 3835.
[4] Chattopadhyay, S., and Mcmechan, G. A., 2008, Imaging conditions for prestack reverse time migration: Geophysics, 73(3), S81 - S89.
[5] Chen, J. B., 2012, An average-derivative optimal scheme for frequency-domain scalar wave equation: Geophysics, 77(6), T201 - T210.
[6] Dablain, M. A., 1986, The application of high-order differencing to the scalar wave equation: Geophysics 51(1), 54 - 66.
[7] Fletcher, R. P., Nichols, D., and Cavalca, M., 2012, Wave path-consistent Effective Q Estimation for Q-compensated Reverse-time Migration: 74th EAGE Annual Meeting, Expanded Abstracts, A020.
[8] Fu, D. D., Liu, Y., Chen, Z. D., and Wang, S. Z., 1993, Acoustic wave modeling in viscoelastic media by pseudospectral method: Journal of Jianghan Petroleum Institute (in Chinese), 15(4), 32 - 39.
[9] Futterman, W. I., 1962, Dispersive body waves: Journal of Geophysical Research, 67(13), 5279 - 5291.
[10] Hargreaves, N. D., and Calvert, A. J., 1991, Inverse Q ?ltering by Fourier transform: Geophysics, 56(4), 519 - 527.
[11] Kosloff, D., Pestana, R. C., and Tal-Ezer, H., 2010, Acoustic and elastic numerical wave simulations by recursive spatial derivative operators: Geophysics, 75(6), T167 - T174.
[12] Li, Q. Z., 1993, High-resolution seismic data processing: Petroleum Industry Press, China, 37 - 38.
[13] Liu, H. W., Liu H., and Zou, Z., 2010, The Problems of denoise and storage in seismic RTM: Chinese Journal of Geophysics, 53(9), 2171 - 2180.
[14] Liu, Y., 2013, Globally optimal finite-difference schemes based on least squares: Geophysics, 78(4), T113 - T132.
[15] Liu, Y., and Sen, M. K., 2009, A new time-space domain high-order finite-different method for the acoustic wave equation: Journal of Computational Physics, 228, 8779 - 8806.
[16] Liu, Y., and Sen, M. K., 2010a, Acoustic VTI modeling with a time-space domain dispersion-relation-based finite-difference scheme: Geophysics, 75(3), A7 - A13.
[17] Liu, Y., and Sen, M. K., 2010b, A hybrid scheme for absorbing edge re?ections in numerical modeling of wave propagation: Geophysics, 75(2), A1 - A6.
[18] Liu, Y., and Sen, M. K., 2011a, Finite-difference modeling with adaptive variable-length spatial operators: Geophysics, 76(4), T79 - T89.
[19] Liu, Y., and Sen, M. K., 2011b, Scalar wave equation modeling with time-space domain dispersion-relation-based staggered-grid finite-difference schemes: Bulletin of the Seismological Society of America, 101(1), 141 - 159.
[20] Mittet, R., Sollie, R., and Hokstad, K., 1995, Prestack depth migration with compensation for absorption and dispersion: Geophysics, 60(5), 1485 - 1494.
[21] Robertsson, J. O. A., Blanch, J. O., Symes, W. W., and Burrus, C. S., 1994, Galerkin-wavelet modeling of wave propagation: Optimal finite difference stencil design: Mathematical and Computer Modelling, 19(1), 31 - 38
[22] Robinson, J. C., 1979, A technique for the continuous representation of dispersion in seismic data: Geophysics, 44(8), 1345 - 1351.
[23] Robinson, J. C., 1982, Time-variable dispersion processing through the use of phased sinc functions: Geophysics, 47(7), 1106 - 1110.
[24] Shan, G. J., 2009, Optimized implicit finite-difference and Fourier finite-difference migration for VTI media: Geophysics, 74(6), WCA189 - WCA197.
[25] Traynin, P., Liu, J., and Reilly, J., 2008, Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration: 78th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2412 - 2416.
[26] Wang, Y. H., 2002, A stable and efficient approach of inverse Q filtering: Geophysics, 67(2), 657 - 663.
[27] Wang, Y. H., and Guo, J., 2004, Seismic migration with inverse Q filtering: Geophysical Research Letters, 31, L21608.
[28] Wang, Y. H., 2006, Inverse Q-?lter for seismic resolution enhancement: Geophysics, 71(3), V51 - V60.
[29] Wang, Y. H., 2008, Inverse-Q ?ltered migration: Geophysics, 73(1), S1 - S6.
[30] Xie, Y., Xin, K., Sun, J., and Notfors, C., 2009, 3D prestack depth migration with compensation for frequency dependent absorption and dispersion: 79th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2919 - 2923.
[31] Yan, H. Y., and Liu, Y., 2013, Visco-acoustic prestack reverse-time migration based on the time-space domain adaptive high-order finite-difference method: Geophysical Prospecting, 61(5), 941 - 954.
[32] Zhang, C. H., and Ulrych, T. J., 2010, Refocusing migrated seismic images in absorptive media: Geophysics, 75(3), S103 - S110.
[33] Zhang, J. F., Wu, J. Z, and Li, X. Y., 2013, Compensation for absorption and dispersion in prestack migration: An effective Q approach: Geophysics, 78(1), S1 - S14.
[34] Zhang, J. H., and Yao, Z. X., 2012, Globally optimized finite-difference extrapolator for strongly VTI media: Geophysics, 77(4), T125 - T135.
[35] Zhang, Y., and Sun, J., 2009, Practical issues in RTM: true amplitude gathers, noise removal and harmonic-source encoding: First Break, 26(1), 29 - 35.
[36] Zhang, Y., Zhang, P., and Zhang, H. Z., 2010, Compensating for visco-acoustic effects in reverse-time migration: 80th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 3160 - 3164.
[1] Liu Guo-Feng, Meng Xiao-Hong, Yu Zhen-Jiang, and Liu Ding-Jin. An efficient scheme for multi-GPU TTI reverse time migration*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 61-69.
[2] Xue Hao and Liu Yang. Reverse-time migration using multidirectional wavefield decomposition method[J]. APPLIED GEOPHYSICS, 2018, 15(2): 222-233.
[3] Sun Xiao-Dong, Jia Yan-Rui, Zhang Min, Li Qing-Yang, and Li Zhen-Chun. Least squares reverse-time migration in the pseudodepth domain and reservoir exploration[J]. APPLIED GEOPHYSICS, 2018, 15(2): 234-239.
[4] Xu Kai-Jun and Sun Jie. Induced polarization in a 2.5D marine controlled-source electromagnetic field based on the adaptive finite-element method[J]. APPLIED GEOPHYSICS, 2018, 15(2): 332-341.
[5] Zhang Bo, Yin Chang-Chun, Liu Yun-He, Ren Xiu-Yan, Qi Yan-Fu, Cai Jing. 3D forward modeling and response analysis for marine CSEMs towed by two ships[J]. APPLIED GEOPHYSICS, 2018, 15(1): 11-25.
[6] Yang Jia-Jia, Luan Xi-Wu, He Bing-Shou, Fang Gang, Pan Jun, Ran Wei-Min, Jiang Tao. Extraction of amplitude-preserving angle gathers based on vector wavefield reverse-time migration[J]. APPLIED GEOPHYSICS, 2017, 14(4): 492-504.
[7] Sun Xiao-Dong, Li Zhen-Chun, Jia Yan-Rui. Variable-grid reverse-time migration of different  seismic survey data[J]. APPLIED GEOPHYSICS, 2017, 14(4): 517-522.
[8] Zhang Dai-Lei, Huang Da-Nian, Yu Ping, Yuan Yuan. Translation-invariant wavelet denoising of full-tensor gravity –gradiometer data[J]. APPLIED GEOPHYSICS, 2017, 14(4): 606-619.
[9] Sun Xiao-Dong, Ge Zhong-Hui, Li Zhen-Chun. Conjugate gradient and cross-correlation based least-square reverse time migration and its application[J]. APPLIED GEOPHYSICS, 2017, 14(3): 381-386.
[10] Zhao Hu, Wu Si-Hai, Yang Jing, Ren Da, Xu Wei-Xiu, Liu Di-Ou, Zhu Peng-Yu. Designing optimal number of receiving traces based on simulation model[J]. APPLIED GEOPHYSICS, 2017, 14(1): 49-55.
[11] Sun Xiao-Dong, Ge Zhong-Hui, Li Zhen-Chun, Hong Ying. The stability problem of reverse time migration for viscoacoustic VTI media[J]. APPLIED GEOPHYSICS, 2016, 13(4): 608-613.
[12] Yang Jia-Jia, Luan Xi-Wu, Fang Gang, Liu Xin-Xin, Pan Jun, Wang Xiao-Jie. Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation[J]. APPLIED GEOPHYSICS, 2016, 13(3): 500-510.
[13] Yan Shou-Guo, Xie Fu-Li, Li Chang-Zheng, Zhang Bi-Xing. Dispersion function of Rayleigh waves in porous layered half-space system[J]. APPLIED GEOPHYSICS, 2016, 13(2): 332-342.
[14] Zhang Gong, Li Ning, Guo Hong-Wei, Wu Hong-Liang, Luo Chao. Fracture identification based on remote detection acoustic reflection logging[J]. APPLIED GEOPHYSICS, 2015, 12(4): 473-481.
[15] Cai Xiao-Hui, Liu Yang, Ren Zhi-Ming, Wang Jian-Min, Chen Zhi-De, Chen Ke-Yang, Wang Cheng. Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme[J]. APPLIED GEOPHYSICS, 2015, 12(3): 409-420.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn