APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2009, Vol. 6 Issue (2): 138-149    DOI: 10.1007/s11770-009-0022-1
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
A Quadratic precision generalized nonlinear global optimization migration velocity inversion method
1. School of Communication and Information Engineering, UESTC, Chengdu 610054, China.
2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, CDUT, Chengdu 610059, China.
Zhao Tai-Yin1, Hu Guang-Min1, He Zhen-Hua2, and Huang De-Ji2
 Download: PDF (0 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract An important research topic for prospecting seismology is to provide a fast accurate velocity model from pre-stack depth migration. Aiming at such a problem, we propose a quadratic precision generalized nonlinear global optimization migration velocity inversion. First we discard the assumption that there is a linear relationship between residual depth and residual velocity and propose a velocity model correction equation with quadratic precision which enables the velocity model from each iteration to approach the real model as quickly as possible. Second, we use a generalized nonlinear inversion to get the global optimal velocity perturbation model to all traces. This method can expedite the convergence speed and also can decrease the probability of falling into a local minimum during inversion. The synthetic data and Marmousi data examples show that our method has a higher precision and needs only a few iterations and consequently enhances the practicability and accuracy of migration velocity analysis (MVA) in complex areas.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHAO Tai-Yin
HU Guang-Min
HE Zhen-Hua
HUANG De-Ji
Key wordsPre-stack depth migration   migration velocity analysis   generalized nonlinear inversion   common imaging gather     
Received: 2009-03-10;
Fund:

This work is supported by National Natural Science Foundation of China (Grant No.40839905).

Cite this article:   
ZHAO Tai-Yin,HU Guang-Min,HE Zhen-Hua et al. A Quadratic precision generalized nonlinear global optimization migration velocity inversion method[J]. APPLIED GEOPHYSICS, 2009, 6(2): 138-149.
 
[1] Al-Yahya, K., 1989, Velocity analysis by iterative profile migration: Geophysics, 54, 718 - 729.
[2] Biondi, B., and Sava, P., 1999, Wave-equation migration velocity analysis: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1723 - 1726.
[3] Biondi, B., and T. Tisserant, 2004, 3-D angle-domain common-image gathers for migration velocity analysis: Geophysical Prospecting, 52, 575 - 591.
[4] Guo, J. Y., and Zhou, H. B., 2002, Toward accurate velocity models by 3D tomographic velocity analysis: EAGE 64th Conference & Exhibition, 27 - 30.
[5] He, Z. H., Huang, D. J., and Hu, G. M., 1999, The characteristic, theory and its application of seismic wave field in complex oil-gas reservoir: Sichuan Publishing House of Science & Technology.
[6] He Z. H., 1989, Seismic reflection data migration and inverse methods, Chongqing Publishing House.
[7] He, Z. H., Xiong, G. J., and Zhang, Y. X., 1998, Nonzero offset seismic forward modeling by one-way acoustic wave equation: 68th Ann. Internat. Mtg., Soc.Expl.Geophys., Expanded Abstracts, 1921 - 1924.
[8] Hu, G. M., He, Z. H., and Huang, D. J., 2001, Nonlinear optimal inversion of seismic trace: Chinese Journal of Geophysics, 44, 240 - 247.
[9] Huang, L. J., Fehler, M., and Roberts, P., 1999, Extended local Rytov Fourier migration method, Geophysics, 64(1), 1524 - 1534.
[10] Huang, L. J., Fehler, M., and Wu, R.S., 1999, Extended local Born Fourier migration method, Geophysics, 64(1), 1535 - 1545.
[11] Lafond, C. F., and Levander, A. R., 1993, Migration moveout analysis and depth focusing: Geophysics, 58(1), 91 - 100.
[12] Li, Y. M., 2002, Improving the level of seismic wave’s migration and attribute’s description in face of exploration and exploitation: Progress in Exploration Geophysics, 17(2), 198 - 210.
[13] Liu, S. W., and Wang, H. Z., 2006, Time-shift depth-focusing for migration velocity analysis: Internat. Geophy. Mtg., SPG/SEG. Expanded Abstracts, 51 - 54.
[14] Liu, S. W., Geng, J. H., Feng, W., 2005, Controlled illumination and seismic acquisition geometry for target-oriented imaging: Applied Geophysics, 2(4), 230 - 234.
[15] Liu, W., Popovici, A. M., and Bevc, D., 2001, 3D migration velocity analysis for common image gathers in the reflection angle domain: 71th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 885 - 888.
[16] Liu, Z. Y., and Bleistein, N., 1995, Migration velocity analysis: Theory and an iterative algorithm: Geophysics, 60(1), 142 - 153.
[17] Liu, Z. Y., 1997, An analytical approach to migration velocity analysis: Geophysics, 62(4), 1238 - 1249.
[18] Mackay, S. and Abma, R., 1992, Imaging and velocity estimation with depth-focusing analysis: Geophysics, 57(6), 1608 - 1622.
[19] Meng, Z. B., Bleistein, N., and Waytt, K., 1999a, 3-D analytical migration velocity analysis I: Two-step velocity estimation by reflector-normal update: 69th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1727 - 1730.
[20] Meng, Z. B., Bleistein, N., and Valasek, P., 1999b, 3-D analytical migration velocity analysis II: Velocity gradient estimation: 69th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1731 - 1734.
[21] Sava, P., and Biondi, B., 2004, Diffraction-focusing migration velocity analysis: 74th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2395-2398.
[22] Schuster, G. T., and Hu, J. X., 2000, Green’s function for migration: Continuous recording geometry: Geophysics, 65(1), 167 - 175.
[23] Wang, B., and Pann, K., 1998, Model-based interpretation of focusing panels for depth focusing analysis: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1596 - 1599.
[24] Xin, K. F., Wang, H. Z., and Ma, Z. T., 2002, Migration + inversion: An accurate migration velocity analysis method: Progress in Exploration Geophysics, 25(3), 20 - 26.
[25] Yang, W. C., 1989, Geophysical inversion and the seismic CT method: Geological Publishing House.
[26] Zhang, W. S., and Zhang, G. Q., 2001, Prestack depth migration by hybrid method with high precision and its parallel implementation: Chinese Journal of Geophysics, 44(4), 542 - 551.
[27] Zhou, H. B., Guo, J. Y., and Young, J., 2001, An alternative residual-curvature velocity updating method for prestack depth migration: 71th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 877 - 880.
[1] Wu Juan, Chen Xiao-Hong, Bai Min, Liu Guo-Chang. Attenuation compensation in multicomponent Gaussian beam prestack depth migration[J]. APPLIED GEOPHYSICS, 2015, 12(2): 157-168.
[2] Liu Shao-Yong, Wang Hua-Zhong, Liu Tai-Chen, Hu Ying, Zhang Cai. Kirchhoff PSDM angle-gather generation based on the traveltime gradient[J]. APPLIED GEOPHYSICS, 2015, 12(1): 64-72.
[3] HAN Jian-Guang, WANG Bin, HAN Ning, XING Zhan-Tao, LU Jun. Multiwave velocity analysis based on Gaussian beam prestack depth migration[J]. APPLIED GEOPHYSICS, 2014, 11(2): 186-196.
[4] ZHOU Hui, LIN He, SHENG Shan-Bo, CHEN Han-Ming, WANG Ying. High angle prestack depth migration with absorption compensation[J]. APPLIED GEOPHYSICS, 2012, 9(3): 293-300.
[5] GONG Xiang-Bo, HAN Li-Guo, NIU Jian-Jun, ZHANG Xiao-Pei, WANG De-Li, DU Li-Zhi. Combined migration velocity model-building and its application in tunnel seismic prediction[J]. APPLIED GEOPHYSICS, 2010, 7(3): 265-271.
[6] ZHANG Kai, LI Zhen-Chun, ZENG Tong-Sheng, DONG Xiao-Chun. Residual curvature migration velocity analysis for angle domain common imaging gathers[J]. APPLIED GEOPHYSICS, 2010, 7(1): 49-56.
[7] ZHANG Kai, LI Zhen-Chun, ZENG Tong-Sheng, DONG Xiao-Chun. Residual curvature migration velocity analysis for angle domain common imaging gathers[J]. APPLIED GEOPHYSICS, 2010, 6(1): 49-56.
[8] YE Yue-Ming, LI Zhen-Chun, XU Xiu-Gang, ZHU Xu-Feng, TONG Zhao-Qi. Preserved amplitude migration based on the one way wave equation in the angle domain[J]. APPLIED GEOPHYSICS, 2009, 6(1): 50-58.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn