APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2009, Vol. 6 Issue (1): 59-69    DOI: 10.1007/s11770-009-0009-y
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Estimation of Q and inverse Q filtering for prestack reflected PP- and converted PS-waves
Yan Hongyong1,2 and Liu Yang1,2
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing, 102249, China.
2. CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Beijing, 102249, China.
 Download: PDF (1019 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resolution is one of the key problems. The main factor affecting converted wave resolution is the absorption of seismic waves in overlying strata. In order to remove the effect of absorption on converted waves, inverse Q filtering is used to improve the resolution. In this paper, we present a method to estimate the S-wave Q values from prestack converted wave gathers. Furthermore, we extend a stable and effective poststack inverse Q filtering method to prestack data which uses wave field continuation along the ray path to compensate for attenuation in prestack common shot PP- and PS-waves. The results of theoretical modeling prove that the method of estimating the S-wave Q values has high precision. The results from synthetic and real data prove that the stable inverse Q filtering method can effectively improve the resolution of prestack PP- and PS-waves.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YAN Hong-Yong
LIU Yang
Key wordsreflected PP-wave   reflected converted PS-wave   prestack   Q   inverse Q filtering     
Received: 2008-12-26;
Fund:

The study was supported by the 863 Program (Grant No.2007AA06Z218).

Cite this article:   
YAN Hong-Yong,LIU Yang. Estimation of Q and inverse Q filtering for prestack reflected PP- and converted PS-waves[J]. APPLIED GEOPHYSICS, 2009, 6(1): 59-69.
 
[1] Bano, M., 1996, Q-phase compensation of seismic records in the frequency domain: Bull. Seis. Soc. Am., 86(4), 1179 - 1186.
[2] Bickel, S. H., and Natarajan, R. R., 1985, Plane-wave Q deconvolution: Geophysics, 50(9), 1426 - 1439.
[3] Carderon-Macias, C., Ortiz-Osornio, M., and Ramos-Martinez, J., 2004, Estimation of quality factors from converted-wave PS data: 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts.
[4] Dasgupta, R., and Clark, R. A., 1998, Estimation of Q from surface seismic reflection data: Geophysics, 63(6), 2120 - 2128.
[5] Gao, J. H., and Yang, S. L., 2007, On the method of quality factors estimation from zero-offset VSP data: Chinese Journal of Geophysics (in Chinese), 50(4), 1198 - 1209.
[6] Hale, D., 1981, An inverse Q-filter: SEP Report 26, 231 - 243.
[7] Hargreaves, N. D., and Calvert, A. J., 1991, Inverse Q filtering by Fourier transform: Geophysics, 56(4), 519 - 527.
[8] Kolsky, H., 1956, The propagation of stress pulses in viscoelastic solids: Phil. Mag., 8(1), 673 - 710.
[9] Liu, C., Liu, Y., Wang, D., Yang, B. J., Gao, Z. S., and Li, Y. Z., 2005, A method to compensate strata absorption and attenuation in frequency domain: Geophysical Prospecting For Petroleum (in Chinese), 20(4), 1074 - 1082.
[10] Liu, Y., and Wei, X. C., 2005, Interval Q inversion from CMP gathers: part I-absorption equation: 75th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1717 - 1720.
[11] Liu, Y., and Wei, X. C., 2005, Interval Q inversion from CMP gathers: part II-inversion method: 75th Ann Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1721 - 1724.
[12] Ma, Z. J., and Liu, Y., 2005, A summary of research on seismic attenuation: Progress In Geophysics (in Chinese), 20(4), 1027 - 1082.
[13] McCarley, L. A., 1985, An autoregressive filer model for constant Q attenuation: Geophysics, 50(5), 749 - 758.
[14] Quan, Y., and Harris, J. M., 1997, Seismic attenuation tomography using the frequency shift method: Geophysics, 62, 895 - 905.
[15] Rickett, J., 2006, Integrated estimation of interval-attenuation profiles: Geophysics, 71(4), A19 - A23.
[16] Rickett, J., 2007, Estimating attenuation and the relative information content of amplitude and phase spectra: Geophysics, 72(1), R19 - R27.
[17] Tonn, R., 1991, The determination of the seismic quality factor Q from VSP data: A comparison of different computational methods: Geophysical Prospecting, 39, 1 - 27.
[18] Wang, Y. H., 2002, A stable and efficient approach of inverse Q filtering: Geophysics, 67(2), 657 - 663.
[19] Wang, Y. H., 2003, Quantifying the effectiveness of stabilized inverse Q filtering: Geophysics, 68(1), 337 - 345.
[20] Wang, Y. H., 2006, Inverse Q-filter for seismic resolution enhancement: Geophysics, 71(3), 51 - 60.
[21] Wang, Y. H., and Guo, J., 2004, Modified Kolsky model for seismic attenuation and dispersion: Journal of Geophysics and Engineering, 1(3), 187 - 196.
[22] Zhang, C. J., and Tadeusz, J. U., 2007, Seismic absorption compensation: A least squares inverse scheme: Geophysics, 72(6), 109 - 114.
[23] Zhang, C. J., and Ulrych, T. J., 2002, Estimation of quality factors from CMP records: Geophysics, 67(5), 1542 - 1547.
[24] Zhang, X. W., Han, L. G., Zhang, F. J., and Shan, G. G., 2007, An inverse Q-filter algorithm based on stable wavefield continuation: Applied Geophysics, 4(4), 263 - 270.
[1] Ma Ru-Peng, Ba Jing, Carcione José Maria, Zhou Xin, and Li Fan. Dispersion and attenuation of compressional waves in tight oil reservoirs: Experiments and simulations*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 36-49.
[2] Zhang Zhen-Bo, Xuan Yi-Hua, and Deng Yong. Simultaneous prestack inversion of variable-depth streamer seismic data*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 99-108.
[3] Wu Zong-Wei, Wu Yi-Jia, Guo Si, and Xu Ming-Hua. Q-factor estimation in CMP gather and the  continuous spectral ratio slope method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 481-490.
[4] Liu Wei, Wang Yan-Chun, Li Jing-Ye, Liu Xue-Qing, and Xie Wei. Prestack AVA joint inversion of PP and PS waves using the vectorized reflectivity method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 448-465.
[5] Ma Qi-Qi and Sun Zan-Dong. Elastic modulus extraction based on generalized pre-stack PP–PS joint linear inversion[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 466-480.
[6] Yan Li-Li, Cheng Bing-Jie, Xu Tian-Ji, Jiang Ying-Ying, Ma Zhao-Jun, Tang Jian-Ming. Study and application of PS-wave pre-stack migration in HTI media and an anisotropic correction method[J]. APPLIED GEOPHYSICS, 2018, 15(1): 57-68.
[7] Gao Feng, Wei Jian-Xin, Di Bang-Rang. Seismic physical modeling and quality factor[J]. APPLIED GEOPHYSICS, 2018, 15(1): 46-56.
[8] Liu Xue-Qing, Wang Yan-Chun, Zhang Gui-Bing, Ma Sheng-Li, Cheng Li-Fang, Yu Wen-Wu. Calculation method of prestack FAGVO and its applications[J]. APPLIED GEOPHYSICS, 2016, 13(4): 641-648.
[9] Song Cheng-Yun, Liu Zhi-Ning, Cai Han-Peng, Qian Feng, Hu Guang-Min. Pre-stack-texture-based reservoir characteristics and seismic facies analysis[J]. APPLIED GEOPHYSICS, 2016, 13(1): 69-79.
[10] Chen Hai-Feng, Li Xiang-Yang, Qian Zhong-Ping, Song Jian-Jun, Zhao Gui-Ling. Prestack migration velocity analysis based on simplified two-parameter moveout equation[J]. APPLIED GEOPHYSICS, 2016, 13(1): 135-144.
[11] Wang Kang-Ning, Sun Zan-Dong, Dong Ning. Prestack inversion based on anisotropic Markov random field–maximum posterior probability inversion and its application to identify shale gas sweet spots[J]. APPLIED GEOPHYSICS, 2015, 12(4): 533-544.
[12] Zhang Ru-Wei, Li Hong-Qi, Zhang Bao-Jin, Huang Han-Dong, Wen Peng-Fei. Detection of gas hydrate sediments using prestack seismic AVA inversion[J]. APPLIED GEOPHYSICS, 2015, 12(3): 453-464.
[13] Zhu Chao, Guo Qing-Xin, Gong Qing-Shun, Liu Zhan-Guo, Li Sen-Ming, Huang Ge-Ping. Prestack forward modeling of tight reservoirs based on the Xu–White model[J]. APPLIED GEOPHYSICS, 2015, 12(3): 421-431.
[14] Wu Juan, Chen Xiao-Hong, Bai Min, Liu Guo-Chang. Attenuation compensation in multicomponent Gaussian beam prestack depth migration[J]. APPLIED GEOPHYSICS, 2015, 12(2): 157-168.
[15] Huang Han-Dong, Wang Yan-Chao, Guo Fei, Zhang Sheng, Ji Yong-Zhen, Liu Cheng-Han. Zoeppritz equation-based prestack inversion and its application in fluid identification[J]. APPLIED GEOPHYSICS, 2015, 12(2): 199-211.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn