APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2013, Vol. 10 Issue (2): 210-221    DOI: 10.1007/s11770-013-0382-4
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Sparse representation-based color visualization method for hyperspectral imaging
Wang Li-Guo1, Liu Dan-Feng1, and Zhao Liang1
1. Harbin Engineering University, College of Information and Communication Engineering, Heilongjiang Province Harbin, 150001, China.
 Download: PDF (1032 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WANG Li-Guo
LIU Dan-Feng
ZHAO Liang
Key wordsHyperspectral   color visualization   sparse representation   multilayer visualization     
Received: 2012-05-15;
Fund:

This research was supported by the National Natural Science Foundation of China (Grant No. 61275010, 61077079), the State Key Program of National Natural Science Foundation of Heilongjiang Province of China (No. ZD201216), and the Fundamental Research Funds for the Central Universities (No. HEUCF130820).

Cite this article:   
WANG Li-Guo,LIU Dan-Feng,ZHAO Liang. Sparse representation-based color visualization method for hyperspectral imaging[J]. APPLIED GEOPHYSICS, 2013, 10(2): 210-221.
 
[1] Bioucas-Dias, J. M., and Figueiredo, M. A. T., 2010, Alternating direction algorithms for constrained sparse regression: application to hyperspectralunmixing: 2th Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Raykjavik, June 14 - 16, 1 - 4.
[2] Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Qian, D., Gader, P., and Chanussot, J., 2012, Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches: Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354 - 379.
[3] Cai, S., Du, Q., and Moorhead, R., 2007, Hyperspectral imagery visualization using double layers: Transactions on Geoscience and Remote Sensing, 45(10), 3028 - 3036.
[4] Cai, S., Du, Q., and Moorhead, R., 2010, Feature-driven multilayer visualization for remotely sensed hyperspectral imagery: Transactions on Geoscience and Remote Sensing, 48(9), 3471 - 3481.
[5] Charles, A. S., Olshausen, B. A., and Rozell, C. J., 2011, Learning Sparse Codes for Hyperspectral Imagery: Journal of Selected Topics in Signal Processing, 5(5), 963 - 78.
[6] Coello, C. A. C., Pulido, G. T., and Lechuga, M. S., 2004, Handling multiple objectives with particle swarm optimization: Evolutionary Computation, 8(3), 256 - 279.
[7] Cui, M., Razddan, A., Hu, J., and Wonka, P., 2009, Interactive hyperspectral image visualization using convex optimization: Transactions on Geoscience and Remote Sensing, 47(6), 1673 - 1684.
[8] Du, Q., Raksuntorn, N., Cai, S., and Moorhead, R., 2008, Color display for hyperspectral imagery: Transactions on Geoscience and Remote Sensing, 46(6), 1858 - 1866.
[9] Erard, S., Drossart, P., and Piccioni, G., 2009, Multivariate analysis of visible and infrared thermal imaging spectrometer (virtis) venus express night side and limb observations: Journal of Geophysical Research, 114(E9), 1 - 20.
[10] Gomez, C., Borgne, H.L., Allemand, P., Delacourt, C., and Ledru, P., 2007, N-FindR method versus independent component analysis for litho-logical identification in hyperspectral imagery: International Journal of Remote Sensing, 28(23), 5315 - 5338.
[11] Greer, J.B., 2010, Sparse demixing: 16th Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI , Orlando, March 16 - 20, 76951O, 1 - 10.
[12] Greer, J.B.. 2012, Sparse Demixing of Hyperspectral Images: Transactions on Image Processing, 21(1), 219 - 228.
[13] Heinz, D. C., and Chang, C. I., 2001, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery: Transactions on Geoscience and Remote Sensing., 39(3), 529 - 545.
[14] Iordache, M. D., Bioucas-Dias, J. M., and Plaza, A., 2011, Sparse Unmixing of Hyperspectral Data: Transactions on Geoscience and Remote Sensing, 9(6), 2014 - 2039.
[15] Jacobson, N. P., and Gupta, M. R., 2005, Design goals and solutions for display of hyperspectral images: Transactions on Geoscience and Remote Sensing, 43(11), 2684 - 2693.
[16] Kim, S. J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D., 2007, An interior-point method for large scale l1-regularized least squares: Journal on Selected Topics in Signal Processing, 1(4), 606 - 617.
[17] Mignotte, M. A., 2010, multiresolution Markovian fusion model for the color visualization of hyperspectral images: Geoscience and Remote Sensing, 48(12), 4236 - 4247.
[18] Mignotte, M., 2012, A Bicriteria-Optimization-Approach-Based Dimensionality-Reduction Model for the Color Display of Hyperspectral Images: Geoscience and Remote Sensing, 50(2), 501 - 513.
[19] Osher, S., Mao, Y., Dong, B., and Yin, W., 2010, Fast linearized bregman iteration for compressive sensing and sparse denoising: Communications in Mathematical Sciences, 8(1), 93 - 111.
[20] Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, J., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J. C., and Trianni, G., 2009, Recent advances in techniques for hyperspectral image processing: Remote Sensing of Environment, 113(1), S110 - S122,
[21] Rogge, D., Rivard, B., Zhang, J., and Feng, J., 2006, Iterative spectral unmixing for optimizing per-pixel endmember sets: Transactions on Geoscience and Remote Sensing, 44(12), 3725 - 3736.
[22] Sharma, G., and Trussell, H. J., 1997, Digital color imaging: Transactions on Image Processing, 6(7), 901 - 932.
[23] Shi, Z., Yang, S., and Jiang, Z., 2011, Hyperspectral target detection using regularized high-order matched filter: Optical Engineering, 50(5), 05720, 1 - 10.
[24] Themelis, K. E., Rontogiannis, A. A., and Koutroumbas, K. D., 2012, A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing: Transactions on Signal Processing, 60(2), 585 - 599.
[25] Weigle, C., Emigh, W. G., Liu, G., Taylor, R. M, James, T. E., and Christopher, G. H., 2000, Oriented texture slivers: A technique for local value estimation of multiple scalar fields: 26th Proceedings Graphics Interface, Montreal, Canada, May 15 - 17, 163 - 170.
[1] Li Guang, Xiao Xiao, Tang Jing-Tian, Li Jin, Zhu Hui-Jie, Zhou Cong, Yan Fa-Bao. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering[J]. APPLIED GEOPHYSICS, 2017, 14(4): 581-590.
[2] Wang Jun-Lu, Lin Pin-Rong, Wang Meng, Li Dang, Li Jian-Hua. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. APPLIED GEOPHYSICS, 2017, 14(2): 291-300.
[3] Xu Xiao-Hong, Qu Guang-Zhong, Zhang Yang, Bi Yun-Yun, Wang Jin-Ju. Ground-roll separation of seismic data based on morphological component analysis in two-dimensional domain[J]. APPLIED GEOPHYSICS, 2016, 13(1): 116-126.
[4] YANG Jing-Hui, WANG Li-Guo, QIAN Jin-Xi. Hyperspectral image classification based on spatial and spectral features and sparse representation[J]. APPLIED GEOPHYSICS, 2014, 11(4): 489-499.
[5] CHEN Xiang-Bin, LV Qing-Tian , YAN Jia-Yong. 3D electrical structure of porphyry copper deposit: A case study of Shaxi copper deposit[J]. APPLIED GEOPHYSICS, 2012, 9(3): 270-278.
[6] CAI Xi-Ling, LIU Xue-Wei, LI Hong, 吕Ying-Mei . Seismic data analysis based on spatial subsets[J]. APPLIED GEOPHYSICS, 2009, 6(4): 354-362.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn