APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2013, Vol. 10 Issue (2): 181-190    DOI: 10.1007/s11770-013-0380-6
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Geophysical data sparse reconstruction based on L0-norm minimization
Chen Guo-Xin1, Chen Sheng-Chang1, Wang Han-Chuang1, and Zhang Bo1
1. Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
 Download: PDF (1170 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transform domain, we can improve the accuracy and stability of the reconstruction by transforming it to a sparse optimization problem. In this paper, we propose a mathematical model for the sparse reconstruction of data based on the L0-norm minimization. Furthermore, we discuss two types of the approximation algorithm for the L0-norm minimization according to the size and characteristics of the geophysical data: namely, the iteratively reweighted least-squares algorithm and the fast iterative hard thresholding algorithm. Theoretical and numerical analysis showed that applying the iteratively reweighted least-squares algorithm to the reconstruction of potential field data exploits its fast convergence rate, short calculation time, and high precision, whereas the fast iterative hard thresholding algorithm is more suitable for processing seismic data, moreover, its computational efficiency is better than that of the traditional iterative hard thresholding algorithm.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
CHEN Guo-Xin
CHEN Sheng-Chang
WANG Han-Chuang
ZHANG Bo
Key wordsGeophysical data   sparse reconstruction   L0-norm minimization   iteratively reweighted least squares   fast iterative hard thresholding     
Received: 2013-01-24;
Fund:

This work was supported by the National Natural Science Foundation of China (Grant No. 41074133).

Cite this article:   
CHEN Guo-Xin,CHEN Sheng-Chang,WANG Han-Chuang et al. Geophysical data sparse reconstruction based on L0-norm minimization[J]. APPLIED GEOPHYSICS, 2013, 10(2): 181-190.
 
[1] Beck, A., and Teboulle, M., 2009, A fast iterative shrinkage-thresholding algorithm for linear inverse problems: Siam J. Imaging Sciences, 2(1), 183 - 202.
[2] Bioucas-Dias, J. M., and Figueiredo, M. A. T., 2007, A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration: IEEE Transactions On Image Processing, 16(12), 2992 - 3004.
[3] Blumensath, T., and Davies, M. E., 2010, Normalized iterative hard thresholding: guaranteed stability and performance: IEEE Journal of Selected Topics in Signal Processing, 4(2), 298 - 309.
[4] Blumensath, T., and Davies, M., 2009, Iterative hard thresholding for compressed sensing: Applied and Computational Harmonic Analysis, 27(3), 265 - 274.
[5] Blumensath, T., 2012, Accelerated iterative hard thresholding: Signal Processing, 92, 752 - 756.
[6] Candès, E., and Donoho, D., 2000, Curvelets—A surprisingly active nonadaptive representation for objects with edges: Vanderbilt University Press, Nashville, 105 - 120.
[7] Candès, E., and Wakin, M., 2008, An introduction to compressive sampling: IEEE Signal Processing Magazine, 25(2), 21 - 30.
[8] Cao, J. J., Wang, Y. F., and Yang, C. C., 2012, Seismic data restoration based on compressive sensing using the regularization and zero-norm sparse optimization: Chinese J. Geophys. (in Chinese) 55(2), 596 - 607.
[9] Donoho, D. L., and Tsaig, Y., 2006, Extensions of compressed sensing: Signal Processing, 86(3), 533 - 548.
[10] Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on Information Theory, 52(4), 1289 - 1306.
[11] Duijndam, A. J. W., Schonewille, M. A., and Hindriks, C. O. H., 1999, Reconstruction of band-limited signals, irregularly sampled along one spatial direction : Geophysics, 2, 524 - 538.
[12] Dunbar, D., and Humphreys, G., 2006, A spatial data structure for poisson-disk sample generation: ACM Transactions on Graphics, 25(3), 503 - 508.
[13] Guo, L. H., Meng, X. H., and Guo, Z. H., 2005, Gridding methods of geophysical irregular data in space domain: Geophysical & Geochemical Exploration. (in Chinese), 29(5), 438 - 442.
[14] Hennenfen, G., and Herrmann, F. J., 2008, Simply denoise: wavefield reconstruction via jittered undersampling: Geophysics, 73(3), 19 - 28.
[15] Herrmann, J., and Hennenfent, G., 2008, Nonparametric seismic data recovery with curvelet frames: Geophysical Journal International, 173(1), 1 - 5.
[16] Jiao, L. C., Yang, S. Y., and Liu, F., 2011, Development and Prospect of Compressive Sensing: Acta Electronica Sinica, 39(7), 1651 - 1662.
[17] Levy, S., and Fullagar, P. k., 1981, Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution: Geophysics, 46(9), 1235 - 1243.
[18] Li, X., Aravkin, A. Y., and Leeuwen, T. V., 2012, Fast-randomized full-waveform inversion with compressive sensing: Geophysics, 77(3), 13 - 17.
[19] Liu, X. W., Liu, H., and Liu, B., 2004, A study on algorithm for reconstruction of de-alias uneven seismic data: Chinese J. Geophys. (in Chinese), 47(2), 299 - 305.
[20] Mallat, S., and Zhang, Z., 1993, Matching pursuit with time-frequency dictionaries: IEEE Trans. on Signal Processing, 41(12), 3397 - 3415.
[21] Meng, X. H., Hou, J. Q., and Liang, H. Y., 2002, The fast realization of discrete smooth interpolation in the interpolation of potential data: Geophysical & Geochemical Exploration (in Chinese), 26(4), 302 - 306.
[22] Pei, Y. L., 2009, The method research of sparse constraint deconvolution and wave impedance inversion: Master Thesis Beijing, China University of Geosciences (Beijing).
[23] Qiu, K., and Dogandzic, A., 2012, Sparse signal reconstruction via ECME Hard Thresholding: IEEE Transactions on Signal Processing, 60(9), 4551 - 4569.
[24] Tang, G., Ma, J. W., and Yang, H. Z., 2012, Seismic data denoising overcomplete based on learning-type overcomplete dictionaries: Applied Geophysics, 9(1), 27 - 32.
[25] Tang, G., and Yang, H. Z., 2010, Seismic data compression and reconstruction based on poisson disk sampling: Chinese J Geophys (in Chinese), 53(9), 2181 - 2188.
[26] Tikhonov, A. N., and Arsenin, V. Y., 1977, Solutions of ill-posed problems: John Wiley and Sons, New York.
[27] Trad, D., Ulrych, T., and Sacchi, M., 2003, Latest view of sparse radon transform: Geophysics, 68(1), 386 - 399.
[28] Tropp, J. A., and Gilbert, A. C., 2007, Signal recovery from random measurements via orthogonal matching pursuit: IEEE Transactions on Information Theory, 53(12), 4655 - 4666.
[29] Wang, W. Y., and Qiu, Z. Y., 2011, The research to a stable minimum curvature gridding method in potential data processing: Progress in Geophys.(in Chinese), 26(6), 2003 - 2010.
No Similar of article
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn