APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2013, Vol. 10 Issue (2): 170-180    DOI: 10.1007/s11770-013-0375-3
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Seismic data reconstruction based on CS and Fourier theory
Zhang Hua1,2, Chen Xiao-Hong2, and Wu Xin-Min1
1. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology, Fuzhou, Jiangxi 344000, China.
2. National Engineering Laboratory for Offshore Oil Exploration, China University of Petroleum, Beijing 102249, China.
 Download: PDF (1524 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Traditional seismic data sampling follows the Nyquist sampling theorem. In this paper, we introduce the theory of compressive sensing (CS), breaking through the limitations of the traditional Nyquist sampling theorem, rendering the coherent aliases of regular undersampling into harmless incoherent random noise using random undersampling, and effectively turning the reconstruction problem into a much simpler denoising problem. We introduce the projections onto convex sets (POCS) algorithm in the data reconstruction process, apply the exponential decay threshold parameter in the iterations, and modify the traditional reconstruction process that performs forward and reverse transforms in the time and space domain. We propose a new method that uses forward and reverse transforms in the space domain. The proposed method uses less computer memory and improves computational speed. We also analyze the antinoise and anti-aliasing ability of the proposed method, and compare the 2D and 3D data reconstruction. Theoretical models and real data show that the proposed method is effective and of practical importance, as it can reconstruct missing traces and reduce the exploration cost of complex data acquisition.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHANG Hua
CHEN Xiao-Hong
WU Xin-Min
Key wordsFourier transform   compressive sensing (CS)   projection onto convex sets (POCS)   data reconstruction     
Received: 2012-02-15;
Fund:

This research work was sponsored by the National Natural Science Foundation of China (No. 41174107) and the National Science and Technology projects of oil and gas (No. 2011ZX05023-005).

Cite this article:   
ZHANG Hua,CHEN Xiao-Hong,WU Xin-Min. Seismic data reconstruction based on CS and Fourier theory
[J]. APPLIED GEOPHYSICS, 2013, 10(2): 170-180.
 
[1] Abma, R., and Kabir, N., 2006, 3D interpolation of irregular data with a POCS algorithm: Geophysics, 71(5), 91 - 97.
[2] Bregman, L., 1965, The method of successive projection for finding a common point of convex sets: Soviet Math, 6(3), 688 - 692.
[3] Candès, E., Demanet, L., Donoho, D., et al., 2006, Fast discrete curvelet transforms: SIAM Multiscale Modeling and Simulation, 5(1), 861 - 899.
[4] Donoho, D., L., 2006, Compressed sensing: IEEE Transactions on information Theory. 52(4), 1289-1306.
[5] Gao, J. J., Chen, X. H., and Li, J. Y., 2011, The reconstruction method for irregular seismic data: Oil Geophysical prospecting (in Chinese), 46(1), 40 - 46.
[6] Gao, J. J., Chen, X. H., Li, J. Y., et a1., 2010, Irregular seismic data reconstruction based on exponential threshold model of POCS method: Applied Geophysics, 7(3), 229 - 238.
[7] Galloway, E., and Sacchi, M., 2007, POCS method for seismic data reconstruction of irregularly sampled data: CSPG Conference, Calgary, Canada, 555.
[8] Herrmann, F. J., 2010, Randomized sampling and sparsity: Getting more information from fewer samples: Geophysics, 173 - 187.
[9] Hennenfent, G., Fenelon, L., and Herrmann, F. J., 2010, Nonequispaced curvelet transform for seismic data reconstruction: A sparsity- promoting approach: Geophysics, 75(6), 203 - 210.
[10] Hennenfent, G., and Herrmann, F. J., 2008, Simply denoise: wavefield reconstruction via jittered under-sampling: Geophysics 73(3), 19 - 28.
[11] Jin, S., 2010, 5D seismic data regularization by a damped least-norm Fourier inversion: Geophysics, 75(6), 103 - 111.
[12] Ma, J. W., Tang, G., and Tang, W., 2010, Recovery of incomplete seismic data based on Curvelet transform and compressed sensing: Chinese Geophysical Year Meeting (in Chinese). ChangSha, 656 - 659.
[13] Kreimer, N., and Sacchi, M., 2012, A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation: Geophysics 77(3), 113 - 122.
[14] Liu, B., 2004, Multi-dimensional reconstruction of seismic data: Ph.D. Thesis, University of Alberta, Canada, 1 - 15.
[15] Naghizadeh, M., and Sacchi, M. D., 2010a, Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data: Geophysics, 75(6), 189 - 202.
[16] Ozkan, M., Tekalp, M., and Sezan, M., 1994, POCS based restoration of space-varying blurred images: IEEE Transactions on Image Processing, 3(4), 450 - 454.
[17] Trad, D., Ulryeh, T., and Sacchi, M., 2003, Latest view of sparse Radon transform: Geophysics, 68(1), 386 - 399.
[18] Trad, D. O., 2009, Five-dimensional interpolation: Recovering from acquisition constraints: Geophysics, 74(6), 123 - 132.
[19] Tang, G., and Yang, H. Z., 2010, Seismic data compression and reconstruction based oil Poisson Disk sampling: Chinese J. Geophys. (in Chinese), 53(9), 2181 - 2188.
[20] Tang, G., 2010.Seismic Data Reconstruction and Denoising based on Compressive Sensing and Sparse Representation: Ph.D.thesis, Tsinghua University (in Chinese), 62 - 65.
[21] Vassallo, M., A. Ozbek, K. Ozdemir., and K. Eggenberger., 2010, Crossline wavefield reconstruction from multicomponent streamer data: Part 1 -Multichannel interpolation by matching pursuit (MIMAP) using pressure and its crossline gradient: Geophysics, 75(6), 53 - 67.
[22] Wang, J. F., Ng, M., and Perz, M., 2010, Seismic data interpolation by greedy local Radon transform: Geophysics, 75(6), 225 - 234.
[23] Xu, S., Zhang, Y., Pham, D., and Lambare, G., 2005, Antileakage Fourier transform for seismic data regularization: Geophysics, 70(4), 87 - 95.
[1] Li Guang, Xiao Xiao, Tang Jing-Tian, Li Jin, Zhu Hui-Jie, Zhou Cong, Yan Fa-Bao. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering[J]. APPLIED GEOPHYSICS, 2017, 14(4): 581-590.
[2] Zhang Hua, Chen Xiao-Hong, Zhang Luo-Yi. 3D simultaneous seismic data reconstruction and noise suppression based on the curvelet transform[J]. APPLIED GEOPHYSICS, 2017, 14(1): 87-95.
[3] Yang Ya-Peng, Wu Mei-Ping, Tang Gang. Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming[J]. APPLIED GEOPHYSICS, 2015, 12(2): 147-156.
[4] Ge Zi-Jian, Li Jing-Ye, Pan Shu-Lin, Chen Xiao-Hong. A fast-convergence POCS seismic denoising and reconstruction method[J]. APPLIED GEOPHYSICS, 2015, 12(2): 169-178.
[5] Zhang Jun-Hua, Zhang Bin-Bin, Zhang Zai-Jin, Liang Hong-Xian, Ge Da-Ming. Low-frequency data analysis and expansion[J]. APPLIED GEOPHYSICS, 2015, 12(2): 212-220.
[6] CAI Rui, ZHAO Qun, SHE De-Ping, YANG Li, CAO Hui, YANG Qin-Yong. Bernoulli-based random undersampling schemes for 2D seismic data regularization[J]. APPLIED GEOPHYSICS, 2014, 11(3): 321-330.
[7] GOU Fu-Yan, LIU Cai, LIU Yang, FENG Xuan, CUI Fang-Zi. Complex seismic wavefield interpolation based on the Bregman iteration method in the sparse transform domain[J]. APPLIED GEOPHYSICS, 2014, 11(3): 277-288.
[8] CHAI Yu-Pu. A-E equation of potential field transformations in the wavenumber domain and its application[J]. APPLIED GEOPHYSICS, 2009, 6(3): 205-216.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn