APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2010, Vol. 7 Issue (4): 357-364    DOI: 10.1007/s11770-010-0256-y
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Seismic wave propagation in Kelvin visco-elastic VTI media
Lu Jun1 and Wang Yun2
1. School of Energy Resources, China University of Geosciences, Beijing 100083, China.
2. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
 Download: PDF (713 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In this article, under the assumption of weak anisotropy and weak attenuation, we present approximate solutions of anisotropic complex velocities and quality-factors for Kelvin visco-elastic transverse isotropy (KEL-VTI) media, based on the complex physical parameter matrix. Also, combined with the KEL-VTI media model, the propagation characteristics of the qP-, qSV-, and qSH-wave phases and energies are discussed. Further, we build a typical KEL-VTI media model of the Huainan coal mine to model the wave propagation. The numerical simulation results show that the PP- and PSV-wave theoretical wave-fields are close to the wave-fields of three-component P- and converted-waves acquired in the work area. This result proves that the KEL-VTI media model gives a good approximation to this typical coalfield seismic-geologic conditions and is helpful to the study of attenuation compensation of multi-component seismic data.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LU Jun
WANG Bin
Key wordsKEL-VTI media   complex velocity   quality-factor   anisotropy     
Received: 2009-06-15;
Fund:

This research is supported by the National 973 Program (Grant No. 2006CB202207) and Special Fund (Grant Nos. 2008ZX05035-001-003, 2008ZX05035-003-004, and 2008ZX05008-006-004).

Cite this article:   
LU Jun,WANG Bin. Seismic wave propagation in Kelvin visco-elastic VTI media[J]. APPLIED GEOPHYSICS, 2010, 7(4): 357-364.
 
[1] Banik, N. C., 1987, An effective anisotropy parameter in transversely isotropic media: Geophysics, 52(12), 1654 - 1664.
[2] Carcione, J. M., 1990, Wave propagation in anisotropic linear viscoelastic media: Theory and simulated wavefield: Geophys. J. Int., 101, 739 - 750.
[3] Carcione, J. M., 1995, Constitutive model and wave equations for linear, viscoelastic, anisotropic media: Geophysics, 60(2), 537 - 548.
[4] Carcione, J. M., 2007, Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media: 2nd Ed., Elsevier Science.
[5] Cerveny, V., and Psencik, I., 2005, Plane waves in viscoelastic anisotropic media - I: Theory: Geophys. J. Int., 161(1), 197 - 212.
[6] Cerveny, V., and Psencik, I., 2008, Quality factor Q in dissipative anisotropic media: Geophysics, 73(4), T63 - T75.
[7] Crampin, S., 1981, A review of wave motion in anisotropic and cracked elastic -media: Wave Motion, 3, 343 - 391.
[8] Hosten, B., Deschamps, M., and Tittmann, B. R., 1987, Inhomogeneous wave generation and propagating in lossy anisotropic solids: Application to the characterization of viscoelastic composite materials: J. Acoust. Soc. Am., 82, 1763 - 1770.
[9] Hudson, J. A., 1982, Over all properties of a cracked solid: Math. Proc. Camb. Phil. Soc., 88, 371 - 384.
[10] Lamb, J., and Richter, J., 1966, Anisotropic acoustic attenuation with new measurements for quartz at room temperature: Proc. Roy. Soc. London, Ser. A, 293, 479 - 492.
[11] Lu, J., Wang, Y., and Shi, Y., 2006, The best receiving window for acquisition of multicomponent converted seismic data in VTI media: Chinese J. Geophys. (in Chinese), 49(1), 234 - 243.
[12] Lucet, N., and Zinszner, B., 1992, Effects of heterogeneities and anisotropy on sonic and ultrasonic attenuation in rocks: Geophysics, 57(8), 1018 - 1026.
[13] Niu, B. H., and Sun, C. Y., 2007, Viscoelastic medium and seismic wave propagation, half-space homogeneous isotropic: Geological Publishing House, Beijing.
[14] Sheriff, R. E., 1995, Exploration seismology (second edition): Cambridge University Press, 181 - 183.
[15] Taner, M. T., and Coburn, K., 1981, Surface-consistent deconvolution: 51st Ann. Internat. Mtg., Soc. Expl. Geophys.
[16] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954 - 1966.
[17] Wang, Y., Lu, J., and Shi, Y., et.al, 2009, PS-wave Q estimation based on the P-wave Q values: J. Geophys. Eng., 6, 386 - 389.
[18] Zhang, Z. J., Teng, J. W., and He, Z. H., 1999, The study of seismic wave azimuthal anisotropic character of velocity attenuation, and quality factor in EDA media: Science China (E edition), 29(6), 569 - 574.
[19] Zhu, Y., and Tsvankin, I., 2006, Plane-wave propagation in attenuative transversely isotropic media: Geophysics, 71(2), T17 - T30.
[1] Wang En-Jiang, Liu Yang, Ji Yu-Xin, Chen Tian-Sheng, and Liu Tao. Q full-waveform inversion based on the viscoacoustic equation*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 83-98.
[2] Wu Zong-Wei, Wu Yi-Jia, Guo Si, and Xu Ming-Hua. Q-factor estimation in CMP gather and the  continuous spectral ratio slope method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 481-490.
[3] . Seismic prediction method of multiscale fractured reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(2): 240-252.
[4] Guo Gui-Hong, Yan Jian-Ping, Zhang Zhi, José Badal, Cheng Jian-Wu, Shi Shuang-Hu, and Ma Ya-Wei. Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
[5] Yan Li-Li, Cheng Bing-Jie, Xu Tian-Ji, Jiang Ying-Ying, Ma Zhao-Jun, Tang Jian-Ming. Study and application of PS-wave pre-stack migration in HTI media and an anisotropic correction method[J]. APPLIED GEOPHYSICS, 2018, 15(1): 57-68.
[6] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[7] Qian Ke-Ran, He Zhi-Liang, Chen Ye-Quan, Liu Xi-Wu, Li Xiang-Yang. Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale[J]. APPLIED GEOPHYSICS, 2017, 14(4): 463-480.
[8] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
[9] Huang Xin, Yin Chang-Chun, Cao Xiao-Yue, Liu Yun-He, Zhang Bo, Cai Jing. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method[J]. APPLIED GEOPHYSICS, 2017, 14(3): 419-430.
[10] Su Ben-Yu and Yue Jian-Hua. Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams[J]. APPLIED GEOPHYSICS, 2017, 14(2): 216-224.
[11] Fang Gang, Ba Jing, Liu Xin-Xin, Zhu Kun, Liu Guo-Chang. Seismic wavefield modeling based on time-domain symplectic  and Fourier finite-difference method[J]. APPLIED GEOPHYSICS, 2017, 14(2): 258-269.
[12] Song Lian-Teng, Liu Zhong-Hua, Zhou Can-Can, Yu Jun, Xiu Li-Jun, Sun Zhong-Chun, Zhang Hai-Tao. Analysis of elastic anisotropy of tight sandstone and the influential factors[J]. APPLIED GEOPHYSICS, 2017, 14(1): 10-20.
[13] Liu Xi-Wu, Guo Zhi-Qi, Liu Cai, Liu Yu-Wei. Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin, China[J]. APPLIED GEOPHYSICS, 2017, 14(1): 21-30.
[14] He Yi-Yuan, Hu Tian-Yue, He Chuan, Tan Yu-Yang. P-wave attenuation anisotropy in TI media and its application in fracture parameters inversion[J]. APPLIED GEOPHYSICS, 2016, 13(4): 649-657.
[15] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. Pitfalls of microseismic data inversion in the case of strong anisotropy[J]. APPLIED GEOPHYSICS, 2016, 13(2): 326-332.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn