APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2010, Vol. 7 Issue (3): 217-228    DOI: 10.1007/s11770-010-0252-2
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Improve Q estimates with spectrum correction based on seismic wavelet estimation
Tu Ning1 and Lu Wen-kai1

1. State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.

 Download: PDF (3136 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Characterization of seismic attenuation, quantified by Q, is desirable for seismic processing and interpretation. For seismic reflection data, the coupling between seismic wavelets and the reflectivity sequences hinders their usage for Q estimation. Removing the influence of the reflectivity sequences in reflection data is called spectrum correction. In this paper, we propose a spectrum correction method for Q estimation based on wavelet estimation and then design an inverse Q filter. The method uses higher-order statistics of reflection seismic data for wavelet estimation, the estimated wavelet is then used for spectral correction. Two Q estimation methods are used here, namely the spectral-ratio and centroid frequency shift methods. We test the characteristics of both Q estimation methods under different parameters through a synthetic data experiment. Synthetic and real data examples have shown that reliable Q estimates can be obtained after spectrum correction; moreover, high frequency components are effectively recovered after inverse Q filtering.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
TU Ning
LU Wen-Kai
Key wordsseismic attenuation   seismic wavelet   quality factor   inverse Q filter     
Received: 2010-07-30;
Fund:

This work was supported by National 863 Program of China (Grant No. 2006AA09A101-0102).

Cite this article:   
TU Ning,LU Wen-Kai. Improve Q estimates with spectrum correction based on seismic wavelet estimation[J]. APPLIED GEOPHYSICS, 2010, 7(3): 217-228.
 
[1] Aldridge, D. F., 1990, The Berlage wavelet: Geophysics, 55, 1508 - 1511.
[2] Amundsen, L., and Mittet, R., 1994, Estimation of phase velocities and Q-factors from zero-offset, vertical seismic profile data: Geophysics, 59, 500 - 517.
[3] Dasgupta, R., and Clark, R. A., 1998, Estimation of Q from surface seismic reflection data: Geophysics, 63, 2120 - 2128.
[4] Hackert, C. L., and Parra, J. O., 2004, Improving Q estimates form seismic reflection data using well-log-based localized spectral correction: Geophysics, 69, 1521 - 1529.
[5] Hargreaves, N. D., and Calvert, A. J., 1991, Inverse Q filtering by Fourier transform: Geophysics, 56, 519 - 527.
[6] Hauge, P. S., 1981, Measurements of attenuation from vertical seismic profiles: Geophysics, 46, 1548 - 1558.
[7] Kormylo, J. J., and Mendel, J. M., 1982, Maximum likelihood detection and estimation of Bernoulli-Gaussian processes: IEEE Transactions on Information Theory, IT - 28, 482 - 488.
[8] Korneev, V. A., Goloshubin, G. M., Daley, T. M., and Silin, D. B., 2004, Seismic low-frequency effects in monitoring fluid-saturated reservoirs: Geophysics, 69, 522 - 532.
[9] Li, H., Zhao, W., Cao, H., Yao, F., and Shao, L., 2006, Measures of scale based on the wavelet scalogram with applications to seismic attenuation: Geophysics, 71(5), V111 - V118.
[10] Lu, W., Zhang, Y., Zhang, S., and Xiao, H., 2007, Blind wavelet estimation using a zero-lag slice of the fourth-order statistics: Journal of Geophysics and Engineering, 4, 24 - 30.
[11] Pinson, L. J. W., Henstock, T. J., Dix, J. K., and Bull, J. M., 2008, Estimating quality factor and mean grain size of sediments from high-resolution marine seismic data: Geophysics, 73(4), G19 - G28.
[12] Quan, Y., and Harris, J. M., 1997, Seismic attenuation tomography using the frequency shift method: Geophysics, 62, 895 - 905.
[13] Stainsby, S. D., and Worthington, M. H., 1985, Estimation from vertical seismic profile data and anomalous variations in the North Sea: Geophysics, 50, 615 - 626.
[14] Stockwell, R. G., Mansinha, L., and Lowe, R. P., 1996, Localization of the complex spectrum: The S transform: IEEE Transactions on Signal Processing, 44, 998 - 1001.
[15] Sun, X., Tang, X., Cheng, C. H., and Frazer, L. N., 2000, P- and S-wave attenuation logs from monopole sonic data: Geophysics, 65, 755 - 765.
[16] Varela, C. L., Rosa, A. L. R., and Ulrych, T. J., 1993, Modeling of attenuation and dispersion: Geophysics, 58, 1167 - 1173.
[17] Wang, Y., 2004, Q analysis on reflection seismic data: Geophysical Research Letters, 31, L17606.
[18] White, R. E., 1992, The accuracy of estimating Q from seismic data: Geophysics, 57, 1508 - 1511.
[19] Zhang, C., and Ulrych, T. J., 2002, Estimation of quality factors from CMP records: Geophysics, 67, 1542 - 1547.
[1] Wang En-Jiang, Liu Yang, Ji Yu-Xin, Chen Tian-Sheng, and Liu Tao. Q full-waveform inversion based on the viscoacoustic equation*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 83-98.
[2] Wu Zong-Wei, Wu Yi-Jia, Guo Si, and Xu Ming-Hua. Q-factor estimation in CMP gather and the  continuous spectral ratio slope method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 481-490.
[3] An Yong. Fracture prediction using prestack Q calculation and attenuation anisotropy[J]. APPLIED GEOPHYSICS, 2015, 12(3): 432-440.
[4] Zhang Jun-Hua, Zhang Bin-Bin, Zhang Zai-Jin, Liang Hong-Xian, Ge Da-Ming. Low-frequency data analysis and expansion[J]. APPLIED GEOPHYSICS, 2015, 12(2): 212-220.
[5] Wang Zong-Jun, Cao Si-Yuan, Zhang Hao-Ran, Qu Ying-Ming, Yuan Dian, Yang Jin-Hao, Zhang De-Long, Shao Guan-Ming. Estimation of quality factors by energy ratio method[J]. APPLIED GEOPHYSICS, 2015, 12(1): 86-92.
[6] YANG Xiao-Hui, CAO Si-Yuan, LI De-Chun, YU Peng-Fei, ZHANG Hao-Ran. Analysis of quality factors for Rayleigh channel waves[J]. APPLIED GEOPHYSICS, 2014, 11(1): 107-114.
[7] YU Yong-Cai, WANG Shang-Xu, YUAN San-Yi, QI Peng-Fei. Phase estimation in bispectral domain based on conformal mapping and applications in seismic wavelet estimation[J]. APPLIED GEOPHYSICS, 2011, 8(1): 36-47.
[8] YUAN San-Yi, WANG Shang-Xu. Influence of inaccurate wavelet phase estimation on seismic inversion[J]. APPLIED GEOPHYSICS, 2011, 8(1): 48-59.
[9] LU Jun, WANG Bin. Seismic wave propagation in Kelvin visco-elastic VTI media[J]. APPLIED GEOPHYSICS, 2010, 7(4): 357-364.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn