APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2012, Vol. 9 Issue (4): 468-474    DOI: 10.1007/s11770-012-0350-4
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Interpretation of magnetic anomalies by horizontal and vertical derivatives of the analytic signal
Ma Guo-Qing1, Du Xiao-Juan1, Li Li-Li1, and Meng Ling-Shun1
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130021, China.
 Download: PDF (1057 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Magnetic anomalies are often disturbed by the magnetization direction, so we can’t directly use the original magnetic anomaly to estimate the exact location and geometry of the source. The 2D analytic signal is insensitive to magnetization direction. In this paper, we present an automatic method based on the analytic signal horizontal and vertical derivatives to interpret the magnetic anomaly. We derive a linear equation using the analytic signal properties and we obtain the 2D magnetic body location parameters without giving a priori information. Then we compute the source structural index (expressing the geometry) by the estimated location parameters. The proposed method is demonstrated on synthetic magnetic anomalies with noise. For different models, the proposed technique can both successfully estimate the location parameters and the structural index of the sources and is insensitive to noise. Lastly, we apply it to real magnetic anomalies from China and obtain the distribution of unexploited iron ore. The inversion results are consistent with the parameters of known ore bodies.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
MA Guo-Qing
DU Xiao-Juan
LI Li-Li
MENG Ling-Shun
Key wordsMagnetic anomaly   analytic signal   derivative     
Received: 2011-10-31;
Fund:

This work is supported by the Special Investigation and Assessment of Geological Mineral Resources of the China Geological Survey (No. GZH003-07-03).

Cite this article:   
MA Guo-Qing,DU Xiao-Juan,LI Li-Li et al. Interpretation of magnetic anomalies by horizontal and vertical derivatives of the analytic signal[J]. APPLIED GEOPHYSICS, 2012, 9(4): 468-474.
 
[1] Bastani, M., and Pedersen, L. B., 2001, Automatic interpretation of magnetic dike parameters using the analytic signal technique: Geophysics, 66, 551 - 561.
[2] Doo, W. D., Hsu, S. K., and Yeh, Y. C., 2007, A derivative-based interpretation approach to estimating source parameters of simple 2D magnetic sources from Euler deconvolution, the analytic-signal method and analytical expressions of the anomalies: Geophysical Prospecting, 55, 255 - 264.
[3] Hsu, S. K., Coppens, D., and Shyu, C. T., 1998, Depth to magnetic source using the generalized analytic signal: Geophysics, 63, 1947 - 1957.
[4] Huang, D., Gubbins, D., Clark, R. A., and Whaler, K. A., 1995, Combined study of Euler’s homogeneity equation for gravity and magnetic field.57th EAGE conference, Glasgow, UK, Extended Abstracts, 144.
[5] Li, X., 2006, Understanding 3D analytic signal amplitude: Geophysics, 71, L13 - L16.
[6] Li, X., 2008, Magnetic reduction-to-the-pole at low latitudes: observation and considerations: The leading edge, 990 - 1002.
[7] Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation: Geophysics, 37, 507 - 517.
[8] Rao, D., Babu, H., and Narayan, P., 1981, Interpretation of magnetic anomalies due to dikes: The complex gradient method: Geophysics, 46, 1572 - 1578.
[9] Reid, A. B., Allsop, J. M., Granser, H., Millet, A. J., and Somerton, I. W., 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55, 80 - 91.
[10] Roest, W. R., Verhoef, J., and Pilkington, M., 1992, Magnetic interpretation using 3-D analytic signal. Geophysics, 57, 116 - 125.
[11] Salem, A., Ravat, D., Gamey, T. J., and Ushijima, K., 2002, Analytic signal approach and its applicability in environmental magnetic investigations: Journal of Applied Geophysics, 49, 231 - 244.
[12] Salem, A., and Ravat, D., 2003, A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data: Geophysics, 68(6), 1952 - 1961.
[13] Salem, A., Ravat, D., Mushayandebvu, M. F., and Ushijima, K., 2004, Linearized least-squares method for interpretation of potential-field data from sources of simple geometry: Geophysics, 69, 783 - 788.
[14] Salem, A., 2005, Interpretation of magnetic data using analytic signal derivatives: Geophysical Prospecting, 53, 75 - 82.
[15] Thompson, D. T., 1982, EULDPH’-a new technique for making computer-assisted depth estimates from magnetic data: Geophysics, 47, 31 - 37.
[1] Ma Guo-Qing, Ming Yan-Bo, Han Jiang-Tao, Li Li-Li, and Meng Qing-Fa. Fast local wavenumber (FLW) method for the inversion of magnetic source parameters[J]. APPLIED GEOPHYSICS, 2018, 15(2): 353-360.
[2] Zhu Xiao-San, Lu Min-Jie. Regional metallogenic structure based on aeromagnetic data in northern Chile[J]. APPLIED GEOPHYSICS, 2016, 13(4): 721-735.
[3] Xiong Sheng-Qing, Tong Jing, Ding Yan-Yun, Li Zhan-Kui. Aeromagnetic data and geological structure of continental China: A review[J]. APPLIED GEOPHYSICS, 2016, 13(2): 227-237.
[4] Feng Yan, Jiang Yong, Jiang Yi, Li Zheng, Jiang Jin, Liu Zhong-Wei, Ye Mei-Chen, Wang Hong-Sheng, Li Xiu-Ming. Regional magnetic anomaly fields: 3D Taylor polynomial and surface spline models[J]. APPLIED GEOPHYSICS, 2016, 13(1): 59-68.
[5] GUO Can-Can, XIONG Sheng-Qing, XUE Dian-Jun, WANG Lin-Fei. Improved Euler method for the interpretation of potential data based on the ratio of the vertical first derivative to analytic signal[J]. APPLIED GEOPHYSICS, 2014, 11(3): 331-339.
[6] LI Shu-Ling, LI Yao-Guo, MENG Xiao-Hong. The 3D magnetic structure beneath the continental margin of the northeastern South China Sea[J]. APPLIED GEOPHYSICS, 2012, 9(3): 237-246.
[7] SUN Peng-Fei, WU Yan-Gang, YANG Chun-Cheng, HAN Zhao-Hong, FAN Mei-Ning. Selecting the optimum location of the corner using gravity gradient method *[J]. APPLIED GEOPHYSICS, 2011, 8(4): 269-276.
[8] WANG Wan-Yin, ZHANG Gong-Cheng, LIANG Jian-She. Spatial variation law of vertical derivative zero points for potential field data[J]. APPLIED GEOPHYSICS, 2010, 7(3): 197-209.
[9] SUN Jian-Guo. The stationary phase analysis of the Kirchhoff-type demigrated field[J]. APPLIED GEOPHYSICS, 2010, 7(1): 18-30.
[10] SUN Jian-Guo. The stationary phase analysis of the Kirchhoff-type demigrated field[J]. APPLIED GEOPHYSICS, 2010, 6(1): 18-30.
[11] WANG Wan-Yin, PAN Yu, QIU Zhi-Yun. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. APPLIED GEOPHYSICS, 2009, 6(3): 226-233.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn