APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (4): 391-400    DOI: 10.1007/s11770-012-0352-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于分数阶Fourier变换及SPWD分布的储集层信息提取
王祝文1,王晓丽1,2,向旻1,刘菁华1,张雪昂1,杨闯1
1. 吉林大学地球探测科学与技术学院,长春 130026;
2. 吉林大学学报编辑部,长春 130026
Reservoir information extraction using a fractional Fourier transform and a smooth pseudo Wigner-Ville distribution
Wang Zhu-Wen1, Wang Xiao-Li1,2, Xiang Min1, Liu Jing-Hua1, Zhang Xue-Ang1, and Yang Chuang1
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China.
2. Editorial Department of Journal of Jilin University, Changchun 130026, China.
 全文: PDF (1505 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在分析声波测井信号时,单纯的时间域与频率域方法不能同时了解信号在时间和频率这两方面的信息,而采用单一的一种时频分析方法时又会遇到一些困难,因此,也就会影响声波测井信号分析的可行性。为了解决这些问题,本文将分数阶Fourier变换及平滑伪Wigner-Ville(SPWD)分布的方法相结合,并运用于阵列声波测井信号的分析之中,得到信号的时频分布随分数阶Fourier变换阶数变化的规律,从而总结出不同性质储集层在不同阶数下的时频分布特点。由于分数阶Fourier变换具有旋转特性,而交叉项旋转速度较纵波、横波、斯通利波、伪瑞利波要快,因此,对于不同性质的储集层,根据实际情况选择不同的阶数,交叉项同4种分波会相互分离。通过研究各组分波的性质,就能达到提取储集层信息的目的。结合实际测井数据,表明,此方法极大地削弱了交叉项的干扰,增强了对信号中各组分波的识别能力。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王祝文
王晓丽
向旻
刘菁华
张雪昂
杨闯
关键词分数阶Fourier变换   SPWD分布   阵列声波测井   信号处理   储集层     
Abstract: Currently, it is diffi cult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is diffi cult to use a single type of time-frequency analysis method, which affects the feasibility of acoustic logging signal analysis. In order to solve these problems, in this paper, a fractional Fourier transform and smooth pseudo Wigner- Ville distribution (SPWD) were combined and used to analyze array acoustic logging signals. The time-frequency distribution of signals with the variation of orders of fractional Fourier transform was obtained, and the characteristics of the time-frequency distribution of different reservoirs under different orders were summarized. Because of the rotational characteristics of the fractional Fourier transform, the rotation speed of the cross terms was faster than those of primary waves, shear waves, Stoneley waves, and pseudo Rayleigh waves. By choosing different orders for different reservoirs according to the actual circumstances, the cross terms were separated from the four kinds of waves. In this manner, we could extract reservoir information by studying the characteristics of partial waves. Actual logging data showed that the method outlined in this paper greatly weakened cross-term interference and enhanced the ability to identify partial wave signals.
Key wordsFractional Fourier transform   smooth pseudo Wigner-Ville distribution   array acoustic logging   signal processing   reservoirs   
收稿日期: 2012-07-13;
基金资助:

本研究由国家自然科学基金项目(编号:40874059)资助。

引用本文:   
王祝文,王晓丽,向旻等. 基于分数阶Fourier变换及SPWD分布的储集层信息提取[J]. 应用地球物理, 2012, 9(4): 391-400.
WANG Zhu-Wen,WANG Xiao-Li,XIANG Min et al. Reservoir information extraction using a fractional Fourier transform and a smooth pseudo Wigner-Ville distribution[J]. APPLIED GEOPHYSICS, 2012, 9(4): 391-400.
 
[1] Almeida, L., 1994, The fractional Fourier transform and time-frequency representations: IEEE Trans. Signal Process, 42(11), 3084 - 3091.
[2] Boashash, B., 1991, Time-Frequency signal analysis and processing: Prentice Hall Press, London.
[3] Cheng, C. H., and Toksoz, M. N., 1981, Elastic wave-propagation in a fluid-filled borehole and synthetic acoustic logs: Geophysics, 46(7), 1042 - 1053.
[4] Claasen, T. C., and Mecklenbrauker, W. F., 1983, The aliasing problem in discrete-time Wigner distribution: IEEE Trans. Acoust. Speech Signal Processing, 31(5), 1067 - 1072.
[5] Cohen, L., 1989, Time-Frequency distribution-review: Proc. IEEE, 77(7), 941 - 981.
[6] Cao, Z. L., Wang, K. X., Xie, R. H., and Ma, Z. T., 2005, A comparative study on application of three dispersion analysis to array sonic logs: Chinese Journal of Geophysics (in Chinese), 48(6), 1449 - 1459.
[7] Fan, H. Y., and Liu, S. G., 2007, Wigner distribution unction and Husimi function of a kind of squeezed coherent state: Communications in Theoretical Physics, 47(3), 427 - 430.
[8] Hlawatsch, F., Thulasinath, M.G., Rüdiger, U. L., and William, J., 1995, Smoothed pseudo-Wigner distribution, Choi-Williams distribution and Cone-Kernel representation: ambiguity-domain analysis and experimental comparison: IEEE Transactions on Signal Processing, 43(2), 149 - 168.
[9] Hu, G. S., 2011, Modern signal processing tutorial: Tsinghua University, Beijing.
[10] Lohmann, A. W., 1993, Image rotation, Wigner rotation and the fractional Fourier transforms: Optical of America, 10(10), 2181 - 2186.
[11] Malvar, H. S., 1992, Signal processing with lapped transforms: Artech House, Norwood.
[12] Mandelbrot, B. B., 1982, The fractal geometry of nature: W.H. Freeman and Co., San Fransisco.
[13] Ran, Q. W., 2001, Wavelet transform and fractal Fourier transform theory and their application: Harbin Institute of Technology Press, Haerbin.
[14] Rioul, O., Vetterli, M., 1991, Wavelets and signal processing: IEEE Trans. Signal Process, 8(4), 14 - 38.
[15] Stankovic, L. J., and Stankovic, S., 1995, An analysis of instantaneous frequency representation using time-frequency distributions-generalized Wigner distribution: IEEE Trans. Signal Process, 43(2), 549 - 552.
[16] Tang, X. M., 1997, Predictive processing of array acoustic waveform data: Geophysics, 62, 1710 - 1714.
[17] Tang, X. M., and Cheng, A.., 2004, Quantitative borehole acoustic methods: Pergamon Press, New York.
[18] Tao, G., He, F. J., Yue, W. Z., and Chen, P., 2008, Processing of array sonic logging data with multi-scale STC technique: Petroleum Science, 5, 238 - 241.
[19] Wang, J., Chen, D. H., Zhang, H. L., Zhang, X. M., He, X., and Wang, X. M., 2012, Studies on phase and group velocities from acoustic logging: Applied Geophysics, 9(1), 108 - 113.
[20] Wang, X. M., Han, D. W., and Wang, G. G., 1990, Theory research of head wave and second wave in acoustic logging. Chinese Journal of Geophysics, 33(6), 733 - 739.
[21] Wang, Z. W., Liu, J. H., Yue, C. W., Li, X. C., and Li, C. C., 2009, The filtering characteristics of HHT and its application in acoustic log waveform signal processing: Applied Geophysics, 6(1), 8 - 16.
[22] Xu, D. P., and Guo, K., 2012, Fractional S transform - Part 1: Theory. Applied Geophysics, 9(1), 73 - 79.
[23] Zhang, T., and Tang, X. M., 2000, Evaluation of laminated thin beds in formations using high -resolution acoustic slowness logs: SPWLA 41st Annual Logging Symposium, transactions, June 4 - 7, Dallas, USA.
[24] Zhu, Z. Y., Chi, S. H., and Toksoz, M. N., 2007, Sonic logging in deviated boreholes penetrating an anisotropic formation: Laboratory Study Geophysics, 72(4), 125 - 134.
[1] 李广,肖晓,汤井田,李晋,朱会杰,周聪,严发宝. 基于压缩感知重构算法和形态滤波的AMT近源干扰压制[J]. 应用地球物理, 2017, 14(4): 581-590.
[2] 张铁轩, 陶果, 李君君, 王兵, 王华. 等效偏移距偏移方法在声波反射成像测井中的应用研究[J]. 应用地球物理, 2009, 6(4): 303-310.
[3] 文晓涛, 贺振华, 黄德济. 基于EMD与关联维的储层识别[J]. 应用地球物理, 2009, 6(1): 70-76.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司