APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (4): 378-390    DOI: 10.1007/s11770-012-0349-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
重磁数据网格化时减少失真以及提高效率的技术研究
张晨1,2,3,姚长利1,2,3,谢永茂1,2,3,郑元满1,2,3,关胡良1,2,3,洪东明1,2,3
1. 地质过程与矿产资源国家重点实验室,北京 100083;
2. 地下信息探测技术与仪器教育部重点实验室,北京 100083;
3. 中国地质大学(北京)地球物理与信息技术学院,北京 100083
Reduction of distortion and improvement of efficiency for gridding of scattered gravity and magnetic data
Zhang Chen1,2,3, Yao Chang-Li1,2,3, Xie Yong-Mao1,2,3, Zheng Yuan-Man1,2,3, Guan Hu-Liang1,2,3, and Hong Dong-Ming1,2,3
1. State Key Laboratory of Geological Process and Mineral Resources, Beijing 100083, China.
2. Key Laboratory of Geo-detection, Ministry of Education, Beijing 100083, China.
3. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China.
 全文: PDF (2180 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文以地球物理观测数据网格化过程中插值点位的合理设置为研究对象,提出了一种基于离散数据分布特征分析的网格化参数合理提取方法技术。该方法通过对原始数据作走向、疏密等特征分析,从分析结果中提取合理的网格化参数,通过理论模型分析表明使用该参数能够显著减少数据失真。同时针对传统网格化软件中存在的一些不足之处,我们利用人机交互以及多线程并行技术,提出了若干减少失真以及提高效率的技术措施。在此基础上,我们开发实现了一个实用化的直观图形交互方式的网格化软件。最后给出了一个吉林某地磁异常的网格化实例,通过不同网格化结果的对比分析证明了该方法技术在减少重磁数据网格化时的数据失真、提高网格化效果方面的优越性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晨
姚长利
谢永茂
郑元满
关胡良
洪东明
关键词离散数据   网格化参数   分布特征分析   人机交互   多线程并行技术     
Abstract: This paper presents a reasonable gridding-parameters extraction method for setting the optimal interpolation nodes in the gridding of scattered observed data. The method can extract optimized gridding parameters based on the distribution of features in raw data. Modeling analysis proves that distortion caused by gridding can be greatly reduced when using such parameters. We also present some improved technical measures that use humanmachine interaction and multi-thread parallel technology to solve inadequacies in traditional gridding software. On the basis of these methods, we have developed software that can be used to grid scattered data using a graphic interface. Finally, a comparison of different gridding parameters on fi eld magnetic data from Ji Lin Province, North China demonstrates the superiority of the proposed method in eliminating the distortions and enhancing gridding efficiency.
Key wordsScattered data   gridding parameters   analysis of distribution features   humanmachine interaction   multi-thread parallel technology   
收稿日期: 2011-11-07;
基金资助:

国家公益性项目(201011039)、863项目(2007AA06Z134)和高等学校学科创新引智计划(B07011)。

引用本文:   
张晨,姚长利,谢永茂等. 重磁数据网格化时减少失真以及提高效率的技术研究[J]. 应用地球物理, 2012, 9(4): 378-390.
ZHANG Chen,YAO Chang-Li,XIE Yong-Mao et al. Reduction of distortion and improvement of efficiency for gridding of scattered gravity and magnetic data[J]. APPLIED GEOPHYSICS, 2012, 9(4): 378-390.
 
[1] Alexander, R., and Bensley, G., 2000, C++ footprint and performance optimization: Sams Publishing, Indianapolis, USA, 223 - 245.
[2] Braile, L. W., 1978, Comparison of four random to grid methods: Computers & Geosciences, 4(4), 341 - 349.
[3] Briggs, I. C., 1974, Machine contouring using minimum curvature: Geophysics, 39(1), 39 - 48.
[4] Cooper, G. R. J., 2000, Gridding gravity data using an equivalent layer: Computers & Geosciences, 26(2), 227 - 233.
[5] Deutsch, C. V., and Journel, A. G., 1992, GSLIB - Geostatistical software library and user’s guide: Oxford University Press, New York, 338 - 338.
[6] Franke, R., 1982, Scattered data interpolation: tests of some methods: Mathematics of Computation, 38(157), 181 - 200.
[7] Geosoft Inc. 2011, Oasis montaj 7.3: Mapping and processing system quick start tutorials: Geosoft Inc., Toronto, Canada, 85 - 126.
[8] Golden Software Inc. 2002, Surfer for windows user’s guide: Golden Software Inc., Colorado, USA, 89 - 161.
[9] Guan, X. F., and Wu, H. Y., 2010, Leveraging the power of multi-core platforms for large-scale geospatial data processing: Exemplified by generating DEM from massive LiDAR point clouds: Computers & Geosciences, 36(10), 1276 - 1282.
[10] Haas, A. G., and Viallix, J. R., 1976, Krigeage applied to geophysics, the answer to the problem of estimates and contouring: Geophysical Prospecting, 24(1), 49 - 69.
[11] Huang, H. P., 2008, Airborne geophysical data leveling based on line-to-line correlations: Geophysics, 73(3), 83 - 89.
[12] Lu, G. Y., and Wong, D. W., 2008, An adaptive inverse- distance weighting spatial interpolation technique: Computers & Geosciences, 34(9), 1044 - 1055.
[13] Mauring, E., Beard, L. P., Kihle, O., and Smethurst, M. A., 2002, A comparison of aeromagnetic levelling techniques with an introduction to median levelling: Geophysical Prospecting, 50(1), 43 - 54.
[14] Smith, R. S., and O’Connell, M. D., 2005, Interpolation and gridding of aliased geophysical data using constrained anisotropic diffusion to enhance trends: Geophysics, 70(5), 121 - 127.
[15] Sohi, G. S., and Roth, A., 2001, Speculative multithreaded processors: Computer, 34(4), 66 - 71.
[16] Yao, C. L., Zheng, Y. M., and Zhang, Y.W., 2007, 3-D gravity and magnetic inversion for physical properties using stochastic subspaces: Chinese Journal of Geophysics (in Chinese), 50(5), 1576 - 1583.
[17] Yao, C. L., and Pang, X. L., 2009, Research on the enhancement of trends of aeromagnetic Data: The Chinese Geophysics, China Science and Technology University Press, China, 267 - 267.
[18] Yao, C. L., Xie, Y. M., Zhang, C., and Zheng, Y. M., 2010, Analysis of discrete data and extraction of gridding parameters: The Chinese Geophysics, Seismological Press, China, 421 - 421.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司