APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (4): 365-377    DOI: 10.1007/s11770-012-0348-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
基于椭圆极化的核磁共振找水理论研究
刘道涵1,胡祥云1,李耀国1,2
1. 中国地质大学(武汉)地球物理与空间信息学院,武汉 430074
2. 美国科罗拉多矿业大学地球物理系,美国 科罗拉多州 80401
Understanding the effect of elliptical polarization in surface nuclear magnetic resonance method
Liu Dao-Han1, Hu Xiang-Yun1, and Li Yaoguo1,2
1. Institute of Geophysics & Geomatics, China University of Geosciences, Wuhan, Hubei 430074, China.
2. Department of Geophysics, Colorado School of Mines, Golden, Colorado 80401, USA.
 全文: PDF (2931 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 核磁共振找水是目前唯一能够直接探测地下水的地球物理方法,本文在weichman等人改进的核磁共振理论的基础上,应用经典的Chave算法对含有贝塞尔函数的积分核进行积分,求得了地下磁场和垂直激发场的空间分布。通过计算地下垂直激发场的椭圆极化率,验证了垂直激发场的椭圆极化效应,发现当地下电导率较大时椭圆极化效应将导致垂直激发场严重畸变;地下垂直激发场的正旋和逆旋分量显示了椭圆极化效应对核磁共振找水激发和接收上的不同影响,发射线圈和接收线圈间的延迟相位揭示了相位延迟效应的存在性及其相关性质。将以上理论应用到共圈模式下的核磁共振找水响应函数中,得到了地下氢核的扳倒角、地面核磁共振找水核函数和单一含水层模型的响应曲线,发现椭圆极化效应和相位延迟效应将导致核磁共振找水响应发生明显改变,因此对核磁共振找水理论和实际研究考虑椭圆极化效应是十分必要的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘道涵
胡祥云
李耀国
关键词核磁共振找水   Chave算法   椭圆极化   相位延迟     
Abstract: Currently, surface nuclear magnetic resonance (SNMR) method is the only geophysical method that detects groundwater directly. In this paper, we investigate the effect of elliptical polarization in the perpendicular excitation magnetic field. The effect of elliptical polarization is clearly visible in our ellipticity calculation and it can cause strong distortion to the excitation field in the presence of high subsurface conductivities. By examining the co-rotating and counter-rotating components of the field, we show that elliptical polarization affects transmitting and receiving processes differently and that a clear phase lag exists between transmitter loop and receiver loop. Finally, we derive the response function of coincident loops and calculate proton tip angles, the kernel function and SNMR response curves of a 1D aquifer model. Based on the simulations, we conclude that the elliptical polarization and phase lag can signifi cantly affect SNMR response and it is essential to include elliptical polarization in SNMR modeling and data interpretation.
Key wordsSNMR   Chave algorithm   elliptical polarization   phase lag   
收稿日期: 2011-11-06;
基金资助:

国家自然科学基金(40974040)、国家深部专项(SinoProbe-01-03-02)和湖北省自然科学基金(NO. 2011CDA123)联合资助。

引用本文:   
刘道涵,胡祥云,李耀国. 基于椭圆极化的核磁共振找水理论研究[J]. 应用地球物理, 2012, 9(4): 365-377.
LIU Dao-Han,HU Xiang-Yun,LI Yao-Guo. Understanding the effect of elliptical polarization in surface nuclear magnetic resonance method[J]. APPLIED GEOPHYSICS, 2012, 9(4): 365-377.
 
[1] Boucher, M., Favreau, G., Vouillamoz, J. M., Nazoumou, Y., and Legchenko, A., 2009, Estimating specific yield and transmissivity with magnetic resonance sounding in an unconfined sandstone aquifer (Niger): Hydrogeology Journal, 17(7), 1805 - 1815.
[2] Chalikakis, K., Nielsen, M. R., and Legchenko, A., 2008, MRS applicability for a study of glacial sedimentary aquifers in Central Jutland, Denmark: Journal of Applied Geophysics, 66(3 - 4), 176 - 187.
[3] Chalikakis, K., Nielsen, M. R., Legchenko, A. and Hagensen, T. F., 2009, Investigation of sedimentary aquifers in Denmark using the magnetic resonance sounding method (MRS): Comptes Rendus Geoscience, 341 (10 - 11), 918 - 927.
[4] Chave, A. D., 1983, Numerical integration of related Hankel transforms by quadrature and continued fraction expansion: Geophysics, 12(48), 1671 - 1685.
[5] Dai, M., Hu, X. Y., and Wu, H. B., 2007, Surface nuclear magnetic resonance inversion: Chinese J. Geophys. (in Chinese), (10), 2676 - 2682.
[6] Dai, M., 2008, Surface nuclear magnetic resonance forward and inversion research: Master’s thesis, China University of Geosciences (Wuhan), Wuhan.
[7] Dai, M., Hu, X. Y., and Cheng, Y. P., 2009, High precision numerical simulation for large loop source vertical excited field: Geological Science and Technology Information, 28(2), 122 - 126.
[8] Hertrich, M., 2005, Magnetic Resonance Sounding with separated transmitter and receiver loops for the investigation of 2D water content distributions: PhD Thesis, Technical University of Berlin.
[9] Hu, X. L., Tang, H. M., Ma, S. Z., and Zhang, G. C., 2006, Numerical simulation of the 3D landslide stability in Three Gorges Area Based on NMR: Earth Science -Journal of China University of Geosciences, 31(2), 279 - 284.
[10] Hertrich, M., Braun, M., Gunther, T., Green, A. G., and Yaramanci, U., 2007, Surface nuclear magnetic resonance tomography: Ieee Transactions on Geoscience and Remote Sensing, 45(11), 3752 - 3759.
[11] Hertrich, M., Green, A. G., Braun, M., and Yaramanci, U., 2009, High-resolution surface NMR tomography of shallow aquifers based on multi-offset measurements: Geophysics, 74(6), 47 - 59.
[12] Legchenko, A., Ezersky, M., Camerlynck, C., Al-Zoubi, A., and Chalikakis, K., 2009, Joint use of TEM and MRS methods in a complex geological setting: Comptes Rendus Geoscience, 341(10-11), 908 - 917.
[13] Legchenko, A., and Valla, P., 2002, A review of the basic principles for proton magnetic resonance sounding measurements: Journal of Applied Geophysics, 50(1 - 2), 3 - 19.
[14] Li, Z. Y., Pan, Y. L., Tang, H. M., Zhang, B., Gu, T., and Wang, P., 2004, A new achievement in using the magnetic resonance sounding method—MRS applied in detecting landslip in the three gorges and archaeology in mausoleum of the first qin emperor: Proceeding of CT and 3D Imaging Conference, 104.
[15] Lin, J. Y., 2010, Research on forward and inversion of nuclear magnetic resonance for water exploration: Master’s thesis, China University of Geosciences (Beijing), Beijing.
[16] Pan, Y. L., and Zhang, C. D., 2000, Theory and method of surface nuclear magnetic resonance: China University of Geosciences Press, .
[17] Pan, Y. L.,Wan L., and Yuan, Z., L., 2000, Current status and development trend of detecting underground water with magnetic resonance: Geological Science and Technology Information, 19(1), 105 - 108.
[18] Petke, M. M., and Yaramanci, U., 2010, QT inversion - Comprehensive use of the complete surface NMR data set: Geophysics, 75(4), 199 - 209.
[19] Trushkin, D. V., Shushakov, O. A., and Legchenko, A. V., 1995, Surface NMR applied to an electroconductive medium: Geophysical Prospecting, 43(5), 623 - 633.
[20] Wang, P., 2007, Three dimensional forward of surface nuclear magnetic resonance in uniformity medium: Master’s thesis, China University of Geosciences (Wuhan), Wuhan.
[21] Weichman, P. B., Lavely, E. M., and Ritzwoller, M. H., 2000, Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems: Physical Review E, 62(1), 1290 - 1312.
[22] Weng, A. H., and Wang, X. Q., 2007, Forward simulation with high accuracy of ground nuclear magnetic resonance: Journal of Jilin University( Earth Science Edition), 37(3), 620 - 623.
[23] Weng, A. H., Wang, X. Q., and Liu,G. X., 2007, Nonlinear inversion of surface nuclear magnetic resonance over electrically conductive medium: Chinese J. Geophys. (in Chinese), 50(3), 890 - 896.
[24] Yaramanci, U., Legchenko, A., and Roy, J., 2008, Magnetic Resonance Sounding Special Issue of Journal of Applied Geophysics: Journal of Applied Geophysics, 66 (3-4), 71-72.
[25] Yuan, Z. L., Wan, L., and Li, Z. Y., 2001, Under-ground water detecting effect of the nuclear magnetic resonance method in the water-poor area: Journal of Applied Sciences, 19(3), 265 - 267.
[26] Zhang, R., Hu, X. Y., Yang, D. K., Hao, X. Z., and Dai, M., 2006, Review of development of surface nuclear magnetic resonance: Progress in Geophysics, 21(1), 284 - 289.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司