APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (3): 301-312    DOI: DOI: 10.1007/s11770-012-0341-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
起伏地表下流体填充裂缝的地震波场模拟
兰海强1,2,张中杰1
1. 中国科学院地质与地球物理研究所,岩石圈演化国家重点实验室,北京 100029
2. 中国科学院研究生院,北京 100049
Seismic wavefi eld modeling in media with fl uid-fi lled fractures and surface topography
Lan Hai-Qiang1,2 and Zhang Zhong-Jie1
1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China.
 全文: PDF (1331 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 我们发展了一种模拟复杂地表下含裂缝介质地震波场的方法,这对于解释山地地区的地震资料具有重要意义。基于Coates-Schoenberg方法,把裂缝引入到有限差分法(FD)中,从而使包含裂缝的单元里的弹性介质就具有了局部的各向异性。为了模拟起伏的地表地形,我们借助于贴体网格,将笛卡尔坐标系的具有水平对称轴的横向各向同性介质(HTI)的弹性波方程和自由边界条件变换到曲线坐标系中,采用一种稳定的、显式的二阶精度的有限差分方法离散(曲线坐标系)HTI介质中的弹性波方程。数值实例充分地展现了在不规则地球表面的影响下裂缝介质中地震波传播的复杂性。合成地震记录和波场快照表明裂缝端点产生的散射波在地表处会受不规则地表地形的作用,再次被散射;同理,地表地形产生的散射波,经过裂缝端点时也会被再次散射,尤其是瑞利面波产生的散射波,因其能量很强,严重污染了地震记录,使得识别地下裂缝等产生的有效信息变得异常困难。这对山地地震勘探中资料的解释具有重要意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
兰海强
张中杰
关键词有限差分   数值模拟   裂缝   起伏地表   曲线坐标系     
Abstract: We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-flat) free surface which is beneficial for interpreting exploration data acquired in mountainous regions. Fractures are introduced through the Coates-Schoenberg approach into the FD scheme which leads to local anisotropic properties of the media where fractures are embedded. To implement surface topography, we take advantage of the boundary-conforming grid and map a rectangular grid onto a curved one. We use a stable and explicit second-order accurate fi nite difference scheme to discretize the elastic wave equations (in a curvilinear coordinate system) in a 2D heterogeneous transversely isotropic medium with a horizontal axis of symmetry (HTI). Efficiency tests performed by different numerical experiments clearly illustrate the infl uence of an irregular free surface on seismic wave propagation in fractured media which may be significant to mountain seismic exploration. The tests also illustrate that the scattered waves induced by the tips of the fracture are re-scattered by the features of the free surface topography. The scattered waves provoked by the topography are re-scattered by the fractures, especially Rayleigh wave scattering whose amplitudes are much larger than others and making it very diffi cult to identify effective information from the fractures.
Key wordsfinite difference   modeling   fracture   irregular free surface   curvilinear coordinate   
收稿日期: 2012-04-24;
基金资助:

该研究由国家科技重大专项(2008ZX05008-006-4),中国科学院知识创新工程重要方向项目(KZCX2-Yw-l32)和国家自然科学基金(41074033,40721003, 40830315,40874041)联合资助。

引用本文:   
兰海强,张中杰. 起伏地表下流体填充裂缝的地震波场模拟[J]. 应用地球物理, 2012, 9(3): 301-312.
LAN Hai-Qiang,ZHANG Zhong-Jie. Seismic wavefi eld modeling in media with fl uid-fi lled fractures and surface topography[J]. APPLIED GEOPHYSICS, 2012, 9(3): 301-312.
 
[1] Appelo, D., and Petersson, N. A., 2009, A stable finite difference method for the elastic wave equation on complex geometries with free surfaces: Commun. Comput. Phys., 5, 84 - 107.
[2] Campillo, M., and Bouchon, M., 1985, Synthetic SH seismograms in a laterally varying medium by the discrete wavenumber method: Geophys. J. R. Astr. Soc., 83, 307 - 317.
[3] Coates, R. T., and Schoenberg, M., 1995, Finite-difference modeling of faults and fractures: Geophysics, 60, 1514 - 1526.
[4] Crampin, S., 1984, Effective anisotropic elastic constants for wave propagation through cracked solids: Geophys. J. Int., 76, 135 - 145.
[5] Durand, S., Gaffet, S., and Virieux, J., 1999, Seismic diffracted waves from topography using 3-D discrete wavenumber-boundary integral equation simulation: Geophysics, 64, 572 - 578.
[6] Fornberg, B., 1988, The pseudo-spectral method: Accurate representation in elastic wave calculations: Geophysics, 53, 625 - 637.
[7] Gao, H., and Zhang, J., 2006, Parallel 3-D simulation of seismic wave propagation in heterogeneous anisotropic medium: a grid method approach: Geophys. J. Int., 165, 875 - 888.
[8] Guan, X. Z., Fu, L. Y, Tao, Y., Yu, G. X., 2011, Boundary-volume integral equation numerical modeling for complex near surface: Chinese J. Geophys. (in Chinese), 54(9), 2357 - 2367.
[9] Hestholm, S., and Ruud, B., 1994, 2-D finite-difference elastic wave modeling including surface topography: Geophys. Prosp., 42, 371 - 390.
[10] Hsu, C. J., and Schoenberg, M., 1993, Elastic waves through a simulated fractured medium: Geophysics, 58, 964 - 977.
[11] Hudson, J. A., 1981, Wave speeds and attenuation of elastic waves in material containing cracks: Geophys. J. Int., 64, 133 - 150.
[12] Hvid, S. L., 1994, Three dimensional algebraic grid generation: PhD Thesis, Technical University of Denmark.
[13] Komatitsch, D., and Tromp, J., 2002, Spectral-element simulations of global seismic wave propagation-I. Validation: Geophys. J. Int., 149, 390 - 412.
[14] Lan, H. Q., and Zhang, Z. J., 2011a, Three-dimensional wave-field simulation in heterogeneous transversely isotropic medium with irregular free surface: Bull. Seismol. Soc. Am., 101(3), 1354 - 1370.
[15] ——, 2011b, Comparative study of the free-surface boundary condition in two-dimensional finite-difference elastic wave field simulation: Journal of Geophysics and Engineering, 8, 275 - 286.
[16] Lan, H. Q., Liu, J., and Bai, Z. M., 2011, Wave-field simulation in VTI media with irregular free surface: Chinese J. Geophys. (in Chinese), 54(8), 2072 - 2084.
[17] Lan, H. Q., Xu T., and Bai, Z. M., 2012, Study of the effects due to the anisotropic stretching of the surface-fitting grid on the traveltime computation for irregular surface by the coordinate transforming method: Chinese J. Geophys. (in Chinese), accepted.
[18] Liu, E., Crampin, S., Queen, J. H., and Rizer, W. D., 1993, Velocity and attenuation anisotropy caused by microcracks and microfractures in a multiazimuth reverse VSP: Can. J. Explor. Geophys., 29, 177 - 188.
[19] Liu, E., Hudson, J. A., and Pointer, T., 2000, Equivalent medium representation of fractured rock: J. Geophys. Res., 105, 2981 - 3000.
[20] Moczo, P., Bystricky, E., Kristek, J., Carcione, J., and Bouchon, M., 1997, Hybrid modelling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures: Bull. Seism. Soc. Am., 87, 1305 - 1323.
[21] Nielsen, P., If, F., Berg, P., and Skovgaard, O., 1994, Using the pseudospectral technique on curved grids for 2D acoustic forward modelling: Geophys. Prospect., 42, 321 - 342.
[22] Nilsson, S., Petersson, N. A., Sjogreen, B., and Kreiss, H. O., 2007, Stable difference approximations for the elastic wave equation in second order formulation: SIAM J. Numer. Anal., 45, 1902 - 1936.
[23] Pei, Z. L., He, H. M., and Xie, F., 2010, Elastic wave equation forward modeling for complex surface and complex structure model: Oil Geophysical Prospecting, 45(6), 807 - 818.
[24] Pyrak-Nolte, L. J., Myer, L. R., and Cook, N. G. W., 1990, Transmission of seismic waves across single natural fractures: Journal of Geophysical Research, 95, 8617 - 8638.
[25] Robertsson, J. O. A., 1996, A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography: Geophysics, 61, 1921 - 1934.
[26] Robertsson, J. O. A., and Holliger, K., 1997, Modeling of seismic wave propagation near the earth’s surface: Phys. Earth Planet. Inter., 104, 193 - 211.
[27] Sanchez-Sesma, F. J., Bravo, M. A., and Herrear, I., 1985, Surface motion of topographical irregularities for incident P, SV, and Rayleigh waves: Bull. Seismol. Soc. Am., 75, 263 - 269.
[28] Schoenberg, M., 1980, Elastic wave behavior across linear slip interfaces: Journal of the Acoustical Society of America, 68, 1516 - 1521.
[29] Schoenberg, M., and Muir, F., 1989, A calculus for finely layered anisotropic medium: Geophysics, 54, 581-589.
[30] Schoenberg, M., and Sayers, C., 1995, Seismic anisotropy of fractured rocks: Geophysics, 60, 204 - 211.
[31] Tessmer, E., and Kosloff, D., 1994, 3-D elastic modeling with surface topography by a Chebychev spectral method: Geophysics, 59, 464 - 473.
[32] Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W., 1985, Numerical grid generation: foundations and applications: North-Holland, Amsterdam.
[33] Thomsen, L., 1995, Elastic anisotropy due to aligned cracks in porous rock: Geophys. Prosp., 43, 805 - 829.
[34] Tian, X. B., Zhao, D. P., Zhang, H. S., Tian, Y., and Zhang, Z. J., 2010a, Mantle transition zone topography and structure beneath the central Tien Shan orogenic belt: J. Geophys. Res., 115, B10308, doi:10.1029/2008JB006229.
[35] Tian, X. B., Teng, J. W., Zhang, H. S., Zhang, Z. J., Zhang, Y. Q., Yang, H, 2010b, Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis: Phys. Earth Planet. Inter., 194, 186 - 193.
[36] Wu, C., Harris, J. M., Nihei, K. T., and Nakagawa, S., 2005, Two-dimensional finite-difference seismic modeling of an open fluid-filled fracture: Comparison of thin-layer and linear-slip models: Geophysics, 70, T57 - T62.
[37] Yan, S. X., Liu, H. S., and Yao, X. G., 2000, Geophysical exploration technology in the mountainous area: Petroleum Industry Press, Beijing.
[38] Yilmaz, O., and Doherty, S. M., 2001, Seismic data analysis: Society of Exploration Geophysicists.
[39] Zhang, J. F., 2005, Elastic wave modeling in fractured media with an explicit approach: Geophysics, 70, T75 - T85.
[40] Zhang, W., and Chen, X., 2006, Traction image method for irregular free surface boundaries in finite difference seismic wave simulation: Geophys. J. Int., 167, 337 - 353.
[41] Zhang, Z. J., Wang, G., and Harris, J. M., 1999, Multi-component wavefield simulation in viscous extensively dilatancy anisotropic medium: Phys. Earth Planet. Inter., 114, 25 - 38.
[42] Zhang, Z. J., and Klemperer, S. L., 2010, Crustal structure of the Tethyan Himalaya, south Tibet: new constraints from old wide-angle seismic data: Geophys. J. Int., 181, 1247 - 1260.
[43] Zhang, Z. J., Yuan, X., Chen, Y., Tian, X., Kind, R., Li, X., and Teng, J., 2010, Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin: Earth Planet Sci Lett, 292, 254 - 264.
[1] 王浩,李宁,王才志,武宏亮,刘鹏,李雨生,刘英明,原野. 井旁裂缝对偶极横波反射波幅度影响分析*[J]. 应用地球物理, 2019, 16(1): 1-14.
[2] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[3] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[4] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[5] 曹雪砷,陈浩,李平,贺洪斌,周吟秋,王秀明. 基于分段线性调频的宽带偶极子声源的测井方法研究[J]. 应用地球物理, 2018, 15(2): 197-207.
[6] 段茜,刘向君. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
[7] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[8] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[9] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[10] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[11] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[12] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[13] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[14] 张煜,平萍,张双喜. 孔隙介质中面波有限差分模拟及应力镜像条件[J]. 应用地球物理, 2017, 14(1): 105-114.
[15] 张建敏,何兵寿,唐怀谷. 三维TTI介质中的纯准P波方程及求解方法[J]. 应用地球物理, 2017, 14(1): 125-132.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司