APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (3): 711-728    DOI: 10.1007/s11770-025-1162-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于机器学习的2015年阿拉善左旗5.8级地震序列分析
张帆,韩晓明,裴东洋,*,崔丰智,白沂杭,杨晓忠,
1. 华北电力大学控制与计算机工程学院,北京 102206,中国;2. 内蒙古自治区地震局,呼和浩特 010051,中国;3. 华北电力大学数理学院,北京 102206,中国
Machine Learning–based Analysis of the 2015 M5.8 Alxa Left Banner Earthquake Sequence
Zhang Fan, Han Xiao-Ming, Pei Dong-Yang*, Cui Feng-Zhi, Bai Yi-Hang, Yang Xiao-Zhong
1. College of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China 2. Inner Mongolia Autonomous Region Seismological Bureau, Hohhot 010051, China 3. College of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 机器学习技术在处理密集台阵数据、改善地震目录质量以及深化对地震序列特征和断层结构的理解方面发挥重要作用。2015年4月15日,内蒙古阿拉善左旗发生了5.8级地震,但中国地震台网中心(CENC)在震源区域的有限监测能力,对此次地震的深入研究造成了局限。本研究利用中国地震科学探测台阵(ChinArray)在地震序列期间的观测数据,综合运用PhaseNet、GaMMa和tomoDD方法,进行了震相自动拾取、震相关联及重定位分析,生成了高分辨率地震目录。研究结果显示,检测到的地震事件数量从CENC目录的74个显著提升至708个,使事件数增加了约10倍。生成地震目录的完整性震级MC较CENC目录降低了0.6,在时间分布上符合Omori定律,在震级分布上符合Gutenberg-Richter关系(高震级段存在翘尾偏差),余震集中于主震附近,密度随距离增大而减小,符合典型余震空间分布特征,验证了该目录的可靠性。应用tomoDD方法对366个事件进行重新定位,定位误差普遍降至300 m以内。重新定位后的地震事件沿NEE方向分布,主震位于余震分布区的东北侧。主要的断层面接近垂直,倾向于NW方向,呈现深部收敛、浅部发散的负花状构造,揭示该地震是由左旋走滑运动和局部拉张应力共同作用导致。主发震断层在空间和几何特征上与磴口-本井断裂相符。利用FOCMEC方法获得的序列中10个地震的震源机制解,显示震源区域主要表现为走滑特征,并伴有少量正断分量。在震级-频次图中,本研究生成的目录与CENC目录中实际地震频次开始偏离G-R关系的拐点震级,高于通过MAXC评估的MC值,表明MAXC方法可能同时低估了MC和b值。本研究表明,相较于传统方法,机器学习工作流程显著提高了地震目录的完整性,生成的地震目录具有较高的可靠性,提供了2015年阿拉善左旗5.8级地震发震构造和地震序列特征的更丰富的信息。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词深度学习   阿拉善左旗M5.8地震   发震构造   地震序列   震源机制     
Abstract: Machine learning (ML) efficiently and accurately processes dense seismic array data, improving earthquake catalog creation, which is crucial for understanding earthquake sequences and fault systems; analyzing its reliability is also essential. An M5.8 earthquake struck Alxa Left Banner, Inner Mongolia, China on April 15, 2015, a region with limited CENC monitoring capabilities, making analysis challenging. However, abundant data from ChinArray provided valuable observations for assessing the event. This study leveraged ChinArray data from the 2015 Alxa Left Banner earthquake sequence, employing machine learning (specifically PhaseNet, a deep learning method, and GaMMA, a Bayesian approach) for automated seismic phase picking, association, and location analysis. Our generated catalog, comprising 10,432 phases from 708 events, is roughly ten times larger than the CENC catalog,encompassing all CENC events with strong consistency. A slight magnitude overestimation is observed only at lower magnitudes. Furthermore, the catalog adheres to the Gutenberg-Richter and Omori laws spatially, temporally, and in magnitude distribution, demonstrating its high reliability. Double-difference tomography refined locations for 366 events, yielding a more compact spatial distribution with horizontal errors within 100m, vertical errors within 300m, and travel-time residuals within 0.05s. Depths predominantly range from 10-30km. Aftershocks align primarily NEE, with the mainshock east of the aftershock zone. The near-vertical main fault plane dips northwestward, exhibiting a Y-shaped branching structure, converging at depth and expanding towards the surface. FOCMEC analysis, using first motion and amplitude ratios, yielded focal mechanism solutions for 10 events, including the mainshock. These solutions consistently indicate a strike-slip mechanism with a minor extensional component. Integrating the earthquake sequence's spatial distribution and focal mechanisms suggests the seismogenic structure is a negative flower structure, consistent with the Dengkou-Benjing fault. Comparing the CENC and ML-generated catalogs using the maximum curvature (MAXC) method reveals a 0.6 decrease in completeness magnitude (MC). However, magnitude-frequency distribution discrepancies above the MAXC-estimated MC suggest MAXC may underestimate both MC and the b-value. This study analyzes the 2015 Alxa Left Banner M5.8 earthquake using a reliable, MLgenerated earthquake catalog, revealing detailed information about the sequence, faulting structure, aftershock distribution, and stress characteristics.
Key words Deep learning    M5.8 Alxa Left Banner earthquake    Seismogenic structure    Earthquake sequence    Focal mechanism   
收稿日期: 2024-08-27;
基金资助:This research project is funded by the Inner Mongolia Natural Science Foundation (No. 2024MS04021), the Science and Technology Plan of Inner Mongolia Autonomous Region (No. 2023YFSH0004) and the Director Fund of the Inner Mongolia Autonomous Region Seismological Bureau (No. 2023GG01, No. 2023GG02, No. 2023MS05, No. 2023QN13).
通讯作者: 裴东洋 (Email: pdy265@sina.com).     E-mail: pdy265@sina.com
作者简介: Zhang Fan received his Master's degree in Statistics from Inner Mongolia University of Finance and Economics in 2014. Currently, he serves as a Senior Engineer at the Inner Mongolia Seismic Station, Inner Mongolia Autonomous Region Seismological Bureau, and has been pursuing a Ph.D. at the School of Control and Computer Engineering, North China Electric Power University since September 2019. His research focuses on earthquake prediction and machine learning.
引用本文:   
. 基于机器学习的2015年阿拉善左旗5.8级地震序列分析[J]. 应用地球物理, 2025, 22(3): 711-728.
. Machine Learning–based Analysis of the 2015 M5.8 Alxa Left Banner Earthquake Sequence[J]. APPLIED GEOPHYSICS, 2025, 22(3): 711-728.
 
没有本文参考文献
[1] 张斌,杨超,郑豪豪,严加永,麻昌英,*. 基于深度残差收缩网络的地磁数据去噪[J]. 应用地球物理, 2025, 22(3): 820-834.
[2] 章阳,王晓山*,陈婷,吕国军,余海琳,陈俊霖,. NLLoc定位方法评价及滦州4.3级地震发震构造分析[J]. 应用地球物理, 2025, 22(3): 729-738.
[3] 窦艺涛*,董国旗,李鑫. 基于CNN和Grad-CAM的探地雷达道路地下目标自动识别研究[J]. 应用地球物理, 2025, 22(2): 488-498.
[4] 盛书中*,米梓菲,张小娟,葛坤朋. 2024年4月2日台湾花莲7.4级地震对周边主要断裂及余震的静态应力触发作用[J]. 应用地球物理, 2025, 22(2): 511-522.
[5] 毕金孟*, 宋程, 曹付阳. 基于贝叶斯算法分析环渤海地区的序列活动特征[J]. 应用地球物理, 2025, 22(2): 237-251.
[6] 樊华,王东博,张扬*,王文旭,李涛. 深度学习结合平稳小波包变换压制地震随机噪声[J]. 应用地球物理, 2024, 21(4): 740-751.
[7] 张琳,陈广东,巴晶*,José M. Carcione,徐文豪,方志坚. 基于深度学习的不同分辨率CT扫描图像预测碳酸盐岩渗透率[J]. 应用地球物理, 2024, 21(4): 805-819.
[8] 盛书中, 万永革, 蒋长胜, 王晓山, 梁姗姗, 肖根如, 胡晓辉. 应用综合震源机制解法研究腾冲火山地区地壳应力场[J]. 应用地球物理, 2021, 18(2): 239-252.
[9] 张雷,王健,焦瑞莉,陈浩,王秀明,冀有名. 基于深度学习划分阵列感应测井曲线的层界面[J]. 应用地球物理, 2021, 18(1): 45-53.
[10] 蔡寅,Mei-Ling Shyu,涂钥轩,滕云田,胡星星,. 基于LSTM-RNN 的地震前兆数据异常检测新方法*[J]. 应用地球物理, 2019, 16(3): 257-268.
[11] 尹陈. 基于微震特性的断层检测技术[J]. 应用地球物理, 2017, 14(3): 363-371.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司