APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (3): 611-622    DOI: 10.1007/s11770-024-1137-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于无网格方法的碳纳米管增强复合材料板静力分析
丁鹏初,郭勤强,常利武,*,许君风, 李振,闫世衡,韩冬
1. 中原工学院,智能建造与建筑工程学院,河南省郑州市,450007;2. 河南省豫矿集团有限公司,河南省郑州市,450007;3. 中国冶金地质局西北地质勘查院,陕西省西安市,710061
Mesh-Free Method for Static Analyses of Carbon Nanotube-Reinforced Composite Plates
Ding Peng-chu, Guo Qin-qiang, Chang Li-wu,*, Xu Jun-feng, Li Zhen, Yan Shi-heng, Han Dong
1. College of Intelligent Construction and Civil Engineering, Zhongyuan University of Technology, Zhengzhou 450007,China 2. Department of Henan Yukuang Resources Development Group Co., Ltd, Zhengzhou 450007, China. 3. Department of Northwest Geological Exploration Institute, China Metallurgical Geology Bureau, Xi’an 710061, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文提出了一种无网格方法,用于研究功能梯度碳纳米管增强复合材料板的静态弯曲特性。通过移动最小二乘逼近的高阶连续性特征,直接将板的曲率与节点位移进行插值,从而建立了一种无网格计算方法,其中节点位移为唯一未知数。基于均匀方形板研究了所提方法的收敛性和效率。功能梯度碳纳米管增强复合材料板的杨氏模量沿厚度方向呈连续变化,具体取决于碳纳米管的体积分数。针对不同边界条件、碳纳米管体积分数、几何形状和宽厚比对弯曲行为的影响进行了详细研究。引入了碳纳米管效率参数,用以考虑纳米管与基体之间的载荷传递,将纳米复合材料视为正交各向异性材料。然而,在实际结构中,相较于其他纤维,将碳纳米管按期望方向排列更为困难。因此,在本研究中,复合材料中的碳纳米管被视为随机排列,从而使复合材料的性质近似为各向同性。研究中包括了位移的二阶导数,而有限元方法通常要求插值具有C1连续性,在构建元素和构造插值函数时具有一定困难。无网格方法的显著优势在于仅需C0权重函数。本文基于移动最小二乘逼近建立了基于Kirchhoff板理论的复合材料板的无网格计算方法。利用所提方法对均匀板和功能梯度碳纳米管增强复合材料板进行了弯曲分析,并探讨了边界条件、碳纳米管体积分数、几何形状以及宽厚比等方面的影响。本研究采用了规则的节点排列和背景网格。通过不同的标量参数和节点数计算结果,对各向同性板中心位移的收敛性进行了分析,考察了节点数和不同标量参数的影响,定义并分析了在不同边界条件下的归一化中心位移。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词功能梯度板   碳纳米管增强复合材料   无网格方法   移动最小二乘逼近   弯曲分析     
Abstract: A mesh-free method is presented to investigate the static bending properties of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. The curvature of the plate is directly interpolated with the nodal deflections due to the higher-order continuity property of the moving leastsquares approximation, establishing a mesh-free computational scheme where the nodal deflections are the only unknowns. The convergence and efficiency of the proposed method are studied based on a homogeneous square plate. The FG-CNTRC plates are modeled with continuously varying Young’s moduli along the thickness direction according to the volume fraction of the carbon nanotubes (CNTs). Detailed studies have been conducted on the effects of different boundary conditions, CNT volume fractions, geometric shapes, and width-to-thickness ratios on bending behavior. CNT efficiency parameters are introduced to account for load transfer between the nanotubes and the matrix, treating the nanocomposites as orthotropic materials. However,in the actual structure, arranging the CNTs in the desired direction is more difficult compared to other fibers. Therefore, in the present study, CNTs in the composites are considered to be arranged randomly, resulting in the composite properties being treated as isotropic. The study includes second-order derivatives of deflections, and the finite element method typically requires C1 continuity for interpolation, which introduces challenges in building elements and constructing interpolation functions. The distinct advantage of the mesh-free method is that it requires only C0 weight functions. A mesh-free computational scheme based on moving leastsquares approximations for composite plates using Kirchhoff plate theory is established. Bending analyses of homogeneous and FG-CNTRC plates are conducted using the proposed method. Aspects such as boundary conditions, CNT volume fractions, geometric shapes, and width-to-thickness ratios are also discussed. Regular node arrangements and background meshes are adopted in the present study. Results are computed using different scalar parameters and numbers of nodes. Convergence properties for the central deflection of isotropic plates are analyzed in terms of the number of nodes and different scalar parameters. The normalized central defl ection is defined and examined under various boundary conditions.
Key wordsfunctionally graded plates    carbon nanotube-reinforced composites    mesh-free method    moving least-squares approximation    bending analysis   
收稿日期: 2024-08-24;
基金资助:This work was supported by the National Natural Science Foundation of China (No. 52374110); Key scientific and technological projects of Henan province (No. 242102320337); Basic Research Fund of Zhongyuan University of Technology (No. K2022QN008).
通讯作者: 常利武 (Email: lwchang@zut.edu.cn).     E-mail: lwchang@zut.edu.cn
作者简介: Ding Peng-chu graduated from the China University of Mining & Technology, Beijing, with a Ph.D. and is currently a lecturer at Zhongyuan University of Technology. Hisresearchinterestsinclude engineering mechanics and mine safety and extraction.
引用本文:   
. 基于无网格方法的碳纳米管增强复合材料板静力分析[J]. 应用地球物理, 2025, 22(3): 611-622.
. Mesh-Free Method for Static Analyses of Carbon Nanotube-Reinforced Composite Plates[J]. APPLIED GEOPHYSICS, 2025, 22(3): 611-622.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司