APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (3): 600-610    DOI: 10.1007/s11770-025-1183-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一种新的地球变化磁场组合预测模型
牛超,魏一苇,*,李鸿儒,李夕海,曾小牛,刘继昊,杜爱民,
1.火箭军工程大学;2.中国科学院地质与地球物理研究所
A new combined model for forecasting geomagnetic variation
Chao Niu, Yi-wei Wei,*, Hong-ru Li, Xi-hai Li, Xiao-niu Zeng, Ji-hao Liu, and Ai-min Du
1. Rocket Force University of Engineering, Xi’an 710025, China 2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地球变化磁场的建模与预测是地磁导航和空间环境监测领域的重要研究课题。本文提出了一种新的基于回声892状态网络(Echo State Network, ESN)、集成经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)和复杂性理论样本熵(Sample entropy, SampEn)的组合预测模型。首先,使用EEMD-SampEn将地磁变化时间序列分解为多个复杂度不同的地磁变化子序列。接着,为每个子序列构建基于ESN的预测模型,选择最优的模型参数。最后,利用地磁台站收集的实际数据进行模拟验证。结果表明,该组合模型的预测值能够紧密贴合地球变化磁场的趋势,且明显优于最小二乘支持向量机模型,体现出更好的预测效果,当Kp指数低于3时,预测3h的平均绝对误差小于1.40nT。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地球变化磁场   预测模型   集成经验模态分解   样本熵   回声状态网络     
Abstract: Modeling and forecasting of the geomagnetic variation are important research topics concerning geomagnetic navigation and space environment monitoring. We propose a combined forecasting model using a dynamic recursive neural network called echo state network (ESN), the method of complementary ensemble empirical mode decomposition (EEMD) and the complexity theory of sample entropy (SampEn). Firstly, we use EEMD-SampEn to decompose the geomagnetic variation time series into many series of geomagnetic variation subsequences whose complexity degrees are transparently diff erent. Then, we use ESN to build a forecasting model for each subsequence, selecting the optimal model parameters. Finally, we use the real data collected from the geomagnetic observatory to conduct simulations. The results show that the forecasting value of the combined model can closely conform to the tendency of geomagnetic variation field, and is superior to the least square support vector machine (LSSVM) model. The mean absolute error of the model for three-hour forecasting is less than 1.40nT when Kp index is less than 3.
Key words Geomagnetic variation    Forecasting model    Ensemble empirical mode decomposition (EEMD)    Sample entropy (SampEn)    Echo state network (ESN)   
收稿日期: 2024-10-22;
基金资助:This work was supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2023-JC-YB-221)
通讯作者: 魏一苇 (yiwei_wei@163.com ).     E-mail: yiwei_wei@163.com
作者简介: Chao Niu received the Ph.D. degree from the Rocket Force University of Engineering, Xi’an, China. He is a Associate professor with the Rocket Force University of Engineering. His research interests include remote sensing image processing, pattern recognition, deep learning and geomagnetic information processing.
引用本文:   
. 一种新的地球变化磁场组合预测模型[J]. 应用地球物理, 2025, 22(3): 600-610.
. A new combined model for forecasting geomagnetic variation[J]. APPLIED GEOPHYSICS, 2025, 22(3): 600-610.
 
没有本文参考文献
[1] 蔡寅,Mei-Ling Shyu,涂钥轩,滕云田,胡星星,. 基于LSTM-RNN 的地震前兆数据异常检测新方法*[J]. 应用地球物理, 2019, 16(3): 257-268.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司