APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (3): 588-599    DOI: 10.1007/s11770-025-1210-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
改进的球谐分析和球谐综合FFT算法
苏勇*,张利伟
1 . 西南石油大学土木工程与测绘学院,成都,四川,610500
An Improved FFT Algorithm for Spherical Harmonic Analysis and Synthesis
Su Yong*, Zhang Li-wei
1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 球谐分析(SHA)和球谐综合(SHS)被各个领域的研究人员广泛使用。数值积分和最小二乘法都可以用于球谐分析和球谐综合。然而,当通过求和计算时,这些方法的计算量大。虽然快速傅里叶变换(FFT)有很高的计算效率,但传统上它仅限于处理从零经度开始的全球网格点。本文推导了一种用于球谐分析和球谐综合的改进FFT算法。改进算法不需要网格点从零经度开始,从而扩展了基于FFT的球谐分析和球谐综合的适用性。数值实验表明,新算法保留了传统FFT的计算效率,同时实现了与求和算法相当的精度。因此它能够从全球网格数据中直接计算球谐系数,而不需要插值使格网的起始经度为零经度。此外,该算法可以使用改进的FFT算法从非零经度开始生成等角网格点。为了解决离散球面格网导致纬度正交性丧失的问题,引入了取决于网格类型(如等角或高斯网格)的正交权重因子。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词球谐分析   球谐综合   FFT    正交加权     
Abstract: Spherical harmonic analysis (SHA) and synthesis (SHS) are widely used by researchers in various fields. Both numerical integration and least-squares methods can be employed for analysis and synthesis. However, these approaches, when calculated via summation, are computationally intensive. Although the Fast Fourier Transform (FFT) algorithm is efficient, it is traditionally limited to processing global grid points starting from zero longitude. In this paper, we derive an improved FFT algorithm for spherical harmonic analysis and synthesis. The proposed algorithm eliminates the need for grid points to start at zero longitude,thereby expanding the applicability of FFT-based methods. Numerical experiments demonstrate that the new algorithm retains the computational efficiency of conventional FFT while achieving accuracy comparable to the summation method. Consequently, it enables direct harmonic coefficient calculation from global grid data without requiring interpolation to align with zero longitude. Additionally, the algrithm can generate grid points with equi-angular spacing using the improved FFT algorithm, starting from non-zero longitudes. To address the loss of orthogonality in latitude due to discrete spherical grids, a quadrature weight factor—ependent on grid type (e.g., regular or Gauss grid)—is incorporated, as summarized in this study.
Key wordsSpherical harmonic analysis    Spherical harmonic synthesis    FFT    Quadrature weight   
收稿日期: 2024-11-22;
通讯作者: 苏勇 (Email: suyongme@foxmail.com).     E-mail: suyongme@foxmail.com
作者简介: Su Yong, Associate professor, graduated from Southwest Jiaotong University with a PhD in Geodesy and Surveying Engineering. He is currently an associate professor at the School of Civil Engineering and Geomatics at Southwest Petroleum University. His main research interests are satellite gravity measurement data processing and related theories and techniques for high-precision gravity field model calculation.
引用本文:   
. 改进的球谐分析和球谐综合FFT算法[J]. 应用地球物理, 2025, 22(3): 588-599.
. An Improved FFT Algorithm for Spherical Harmonic Analysis and Synthesis[J]. APPLIED GEOPHYSICS, 2025, 22(3): 588-599.
 
没有本文参考文献
[1] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司