APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2024, Vol. 21 Issue (4): 766-776    DOI: 10.1007/s11770-024-1118-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
利用优化的YOLOv7模型自动检测地震反演低频模型中的‘牛眼’效应
李军, 孟佳兵, 李攀*
1.防灾科技学院, 河北三河065201;2.河北省高校智慧应急应用技术研发中心, 河北三河065201
Detecting the Bull’s-Eye Effect in Seismic Inversion Low-Frequency Models Using the Optimized YOLOv7 Model
Jun Li, Jia-bing Meng, and Pan Li*
1. Institute of Disaster Prevention, Sanhe 065201, China. 2. Hebei Province University Smart Emergency Application Technology Research and Development Center, Sanhe 065201,China.
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了检测地震反演低频模型中的“牛眼”异常,提出了一种利用优化的YOLOv7模型的前沿方法。该模型通过集成高级模块,包括双向特征金字塔网络(BiFPN)、加权交并比(Wise-IoU)、高效通道注意力(ECA)和空洞空间金字塔池化(ASPP)进行了增强。BiFPN促进了强大的特征提取,通过在不同网络规模之间实现双向信息流动,增强了模型捕获地震反演模型中复杂模式的能力。Wise-IoU通过其对交并比加权的方法,提升了储层特征定位的细腻度和准确性。ECA优化了通道间的相互作用,促进了有效的信息交换,并改善了模型对微妙反演细节的总体响应。此外,ASPP模块在多个尺度上战略性地处理空间依赖性,进一步提升了模型识别复杂储层结构的能力。通过协同集成这些高级模块,提出的模型不仅在检测“牛眼”异常方面展现了优越性能,也标志着利用最先进的深度学习技术来增强油气勘探中地震储层预测的准确性和可靠性方面的开创性步骤。结果不仅符合科学文献标准,还为方法论提供了新的视角,为精炼更准确、更高效的油气勘探预测模型的持续努力做出了重大贡献。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词牛眼   YOLOv7   BiFPN   Wise-IoU   ASPP     
Abstract: To detect bull’s-eye anomalies in low-frequency seismic inversion models, the study proposed an advanced method using an optimized you only look once version 7 (YOLOv7) model. This model is enhanced by integrating advanced modules, including the bidirectional feature pyramid network (BiFPN), weighted intersection-over-union (wise-IoU), efficient channel attention (ECA), and atrous spatial pyramid pooling (ASPP). BiFPN facilitates robust feature extraction by enabling bidirectional information fl ow across network scales, which enhances the ability of the model to capture complex patterns in seismic inversion models. Wise-IoU improves the precision and fineness of reservoir feature localization through its weighted approach to IoU. Meanwhile, ECA optimizes interactions between channels, which promotes effective information exchange and enhances the overall response of the model to subtle inversion details. Lastly, the ASPP module strategically addresses spatial dependencies at multiple scales, which further enhances the ability of the model to identify complex reservoir structures. By synergistically integrating these advanced modules, the proposed model not only demonstrates superior performance in detecting bull’s-eye anomalies but also marks a pioneering step in utilizing cutting-edge deep learning technologies to enhance the accuracy and reliability of seismic reservoir prediction in oil and gas exploration. The results meet scientifi c literature standards and provide new perspectives on methodology, which makes significant contributions to ongoing eff orts to refi ne accurate and efficient prediction models for oil and gas exploration.
Key wordsbull’s-eye    YOLO    bidirectional feature pyramid network    weighted intersection-over-union    atrous spatial pyramid pooling   
收稿日期: 2024-01-31;
基金资助:本研究项目由防灾科技学院横向课题油藏地质模型软件测试(XY202303)资助
通讯作者: 李攀 (Email: ark_802@163.com).     E-mail: ark_802@163.com
作者简介: 李军,研究生,防灾科技学院。主要研究方向为深度学习在石油地质中的应用,包括地震信号处理、储层描述、地震裂缝检测以及页岩油气的地球物理预测。致力于开发和优化算法,以提高油气勘探的准确性和效率。
引用本文:   
. 利用优化的YOLOv7模型自动检测地震反演低频模型中的‘牛眼’效应[J]. 应用地球物理, 2024, 21(4): 766-776.
. Detecting the Bull’s-Eye Effect in Seismic Inversion Low-Frequency Models Using the Optimized YOLOv7 Model[J]. APPLIED GEOPHYSICS, 2024, 21(4): 766-776.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司