APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2024, Vol. 21 Issue (4): 650-666    DOI: 10.1007/s11770-024-1085-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于语义分割的测井地层对比算法研究
潘海侠,魏兴云,王才志,韩林枫,王浩,王洪强,赵晗
1.北京航空航天大学软件学院, 北京100191; 2. 中国石油勘探开发研究院,北京 100083
Well Logging Stratigraphic Correlation Algorithm Based on Semantic Segmentation
Wang Cai-zhi, Wei Xing-yun, Pan Hai-xia, Han Lin-feng, Wang Hao, Wang Hong-qiang, and Zhao Han
1. Research Institute of Petroleum Exploration & Development, Beijing 100083, China. 2. School of Software, Beihang University, Beijing 100191, China.
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 测井曲线可以从不同侧面反映地层岩层的属性变化,常用于地层的划分与对比。现有的测井曲线对比算法分为基于深度对齐的方法和基于深度学习的方法。基于深度对齐的方法运行速度慢且学习模式固定。基于深度学习的测井曲线地层对比算法不能很好地捕获曲线在层位边界的特征变化,此外,数据不平衡的情况下,神经网络难以拟合独热编码的曲线分层位置,导致预测结果和实际分层位置偏差较大。针对上述问题,本文提出了基于均匀分布软标签的测井曲线地层对比算法。在训练阶段,引入标签平滑损失函数,以充分考虑数据不平衡以及由于不同层位数据之间的相似性而产生的较大损失;同时,将空间注意力机制和通道注意力机制分别引入到U2-Net的浅层和深层编码阶段,以更好地关注分层位置的变化。在预测阶段,提出了一种阈值优化算法约束分层结果,解决偶发层位重复导致的预测精度下降问题。将本文方法应用于油田实际测井数据,定量评价结果表明,在1米、2米、3米的误差范围内,测井曲线地层划分的精度可以达到87.27%、92.68%、95.08%,验证了本文算法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词测井曲线地层对比   语义分割   标签平滑   注意力机制     
Abstract: Well logging curves serve as indicators of strata attribute changes and are frequently utilized for stratigraphic analysis and comparison. Deep learning, known for its robust feature extraction capabilities, has seen continuous adoption by scholars in the realm of well logging stratigraphic correlation tasks. Nonetheless, current deep learning algorithms often struggle to accurately capture feature changes occurring at layer boundaries within the curves. Moreover, when faced with data imbalance issues, neural networks encounter challenges in accurately modeling the one-hot encoded curve stratification positions, resulting in significant deviations between predicted and actual stratification positions. Addressing these challenges, this study proposes a novel well logging curve stratigraphic comparison algorithm based on uniformly distributed soft labels. In the training phase, a label smoothing loss function is introduced to comprehensively account for the substantial loss stemming from data imbalance and to consider the similarity between different layer data. Concurrently, spatial attention and channel attention mechanisms are incorporated into the shallow and deep encoder stages of U2-Net, respectively, to better focus on changes in stratification positions. During the prediction phase, an optimized confidence threshold algorithm is proposed to constrain stratification results and solve the problem of reduced prediction accuracy because of occasional layer repetition. The proposed method is applied to real-world well logging data in oil fi elds. Quantitative evaluation results demonstrate that within error ranges of 1, 2, and 3 m, the accuracy of well logging curve stratigraphic division reaches 87.27%, 92.68%, and 95.08%, respectively, thus validating the effectiveness of the algorithm presented in this paper.
Key wordsWell logging curve stratigraphic comparison    Semantic segmentation    Label smoothing    Attention mechanism   
收稿日期: 2023-11-27;
基金资助:测井智能处理解释软件平台CIFLog4.0开发;经费编号:431121jt109001100126
通讯作者: 潘海侠 (Email: haixiapan@buaa.edu.cn), 魏兴云(Email: 360103694@qq.com).     E-mail: haixiapan@buaa.edu.cn&360103694@qq.com
作者简介: 魏兴云, 自2010年起,在中国石油勘探开发研究院工作至今,目前在北京航空航天大学软件学院攻读硕士学位,主要从事深度学习、测井和软件研发工作。 电子邮件:weixingyun@buaa.edu.cn 电话:13661343479
引用本文:   
. 基于语义分割的测井地层对比算法研究[J]. 应用地球物理, 2024, 21(4): 650-666.
. Well Logging Stratigraphic Correlation Algorithm Based on Semantic Segmentation[J]. APPLIED GEOPHYSICS, 2024, 21(4): 650-666.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司