APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2021, Vol. 18 Issue (2): 159-170    DOI: 10.1007/s11770-021-0891-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
BP 神经网络在随钻超声成像测井数据处理中的方法研究
赵健1,2, 卢俊强1,2,吴金平3 , 门百永1,2, ,陈宏志1,2
1. 油气资源与探测国家重点实验室 中国石油大学(北京) 102249;
2. 地球物理学院,中国石油大学(北京)102249;
3. 中国石化石油工程技术研究院 北京 102200
Backpropagation neural network method in data processing of ultrasonic imaging logging-while-drilling
Zhao Jian 1,2, Lu Jun-Qiang♦1,2, Wu Jin-Ping 3, Men Bai-Yong 1,2, and Chen Hong-Zhi 1,2
1. State Key Laboratory of Petroleum Resources and Prospecting at China University of Petroleum, Beijing 102249, China.
2. College of Geophysics, China University of Petroleum, Beijing 102249, China.
3. SINOPEC Engineering Technology Research Institute, Beijing 102200, China.
 全文: PDF (2191 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 采用现有方法提取超声回波的到时和幅度不能有效避免随钻超声信号的局部干扰,导致随钻超声成像测井仪在井下自主提取的回波到时和幅度精度较差。本文采用解调算法对随钻超声模拟信号进行预处理,然后设计BP 神经网络模型来拟合波形数据与幅度和到时之间的关系。本文建立超声成像测井模型,利用有限元仿真软件进行正演模拟,通过改变模型参数来模拟不同的测量条件时的响应,将其作为神经网络模型的输入层;将超声回波信号看作是由高频载波信号调制而成的低频信号,设计低通滤波器将高频信号去除,得到低频包络信号;随后提取包络信号的幅度及其对应的时间作为人工神经网络模型的输出层。对比了6 种训练方法的应用效果,认为共轭梯度下降法最适合用于求解该神经网络模型。通过11 组模拟测试数据对该神经网络的性能进行了测试,验证了该模型的有效性,为进一步实际应用奠定了基础。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词随钻超声成像测井   有限元模拟   解调   BP 神经网络     
Abstract: The existing methods for extracting the arrival time and amplitude of ultrasonic echo cannot effectively avoid the local interference of ultrasonic signals while drilling, which leads to poor accuracy of the echo arrival time and amplitude extracted by an ultrasonic imaging logging-while-drilling tool. In this study, a demodulation algorithm is used to preprocess the ultrasonic simulation signals while drilling, and we design a backpropagation neural network model to fit the relationship between the waveform data and time and amplitude. An ultrasonic imaging logging model is established, and the finite element simulation software is used for forward modeling. The response under different measurement conditions is simulated by changing the model parameters, which are used as the input layer of the neural network model; The ultrasonic echo signal is considered as a low-frequency signal modulated by a high-frequency carrier signal, and a low-pass filter is designed to remove the high-frequency signal and obtain the low-frequency envelope signal. Then the amplitude of the envelope signal and its corresponding time are extracted as an output layer of the neural network model. By comparing the application effects of the various training methods, we find that the conjugate gradient descent method is the most suitable method for solving the neural network model. The performance of the neural network model is tested using 11 groups of simulation test data, which verify the effectiveness of the model and lay the foundation for further practical application.
Key wordsultrasonic imaging logging-while-drilling   finite element simulation   demodulation   BP neural network   
收稿日期: 2021-04-23;
基金资助:

中国石化科技攻关项目“随钻井壁超声成像系统研发”(编号:PE19011-1)

通讯作者: 卢俊强(E-mail: lujq@cup.edu.cn)      E-mail: lujq@cup.edu.cn
作者简介: 赵健:目前是中国石油大学(北京)地球物理学院的硕士研究生。他于2019 年在中国石油大学(北京)取得学士学位。他的主要研究方向是地球物理测井,研究内容为随钻超声成像的数值模拟,超声数据的处理与应用,超声成像测井数据处理软件的设计。
引用本文:   
. BP 神经网络在随钻超声成像测井数据处理中的方法研究[J]. 应用地球物理, 2021, 18(2): 159-170.
. Backpropagation neural network method in data processing of ultrasonic imaging logging-while-drilling[J]. APPLIED GEOPHYSICS, 2021, 18(2): 159-170.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司