APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2019, Vol. 16 Issue (1): 15-26    DOI: 10.1007/s11770-019-0756-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
岩石基质模量与临界孔隙度的联合预测方法*
李诺, 陈浩, 张秀梅, 韩建强, 王健, 王秀明
1 中国科学院声学研究所声场与声信息国家重点实验室, 北京 100190;
2 中国科学院大学, 北京100049;
3 北京市海洋深部钻探测量工程技术研究中心, 北京100190
Simultaneous prediction of rock matrix modulus and critical porosity*
Li Nuo, Chen Hao, Zhang Xiu-Mei, Han Jian-Qiang, Wang Jian, Wang Xiu-Ming
1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
2. University of Chinese Academy of Sciences, Beijing 100049, China.
3. Beijing Engineering Research Center of sea deep drilling and exploration, Beijing 100190, China.
 全文: PDF (883 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 岩石的基质模量和临界孔隙度是岩石物理模型的两项重要输入参数,但临界孔隙度通常很难获得。本文基于有效体积模量与孔隙度的线性模型,提出一种快速计算基质模量和临界孔隙度的方法。通过对实验室或现场测量的有效体积模量与孔隙度数据进行最小二乘拟合,利用拟合系数即可计算基质模量和临界孔隙度。本文方法适用的样品孔隙度范围广,并且计算结果能够准确反映样品的粘土含量、压力大小和饱和状态的差异。粘土含量高的样品的基质模量低,临界孔隙度小。压力对基质模量影响不大,但是临界孔隙度会随着压力的升高而略微增大。饱和样品计算得到的基质模量要比干燥的更大。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词模量   孔隙度   粘土含量   压力   饱和度     
Abstract: The matrix modulus and critical porosity in rocks are two critical parameters to seismic rock physics models; however, the critical porosity is difficult to obtain. Based on the linear relation between the effective bulk modulus and porosity, we propose a fast method for calculating the matrix modulus and critical porosity by least square fitting of effective bulk modulus and porosity data measured in laboratory or field. The proposed method is well suited for samples with wide porosity range. The calculation results accurately reflect the differences in clay content, pressure, and saturation state. Samples with high clay content have low matrix modulus and critical porosity. The matrix modulus is independent of pressure, whereas the critical porosity increases with increasing pressure. The calculated matrix modulus for watersaturated samples is higher than that for dry rock samples.
Key wordsmodulus   porosity   clay content   pressure   saturation   
基金资助:

本研究由国家自然科学基金(编号:11574347、11774373、11734017、91630309 和41604123)和中国石油科技创新基金项目(编号:2016D-5007-0304)联合资助。

通讯作者: 陈浩(Email: chh@mail.ioa.ac.cn)     E-mail: chh@mail.ioa.ac.cn
作者简介: 李诺,中国科学院声学研究所,博士研究生,2013年本科毕业于中国石油大学(华东)勘查技术与工程专业,2016 年硕士毕业于中国石油大学(华东)地质资源与地质工程专业。主要从事岩石物理和声波测井的相关问题研究。Email:linuo91@163.com
引用本文:   
. 岩石基质模量与临界孔隙度的联合预测方法*[J]. 应用地球物理, 2019, 16(1): 15-26.
. Simultaneous prediction of rock matrix modulus and critical porosity*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 15-26.
 
[1] Avseth, P., Mukerji, T., and Mavko, G., 2010,Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk: Cambridge university press.
[2] Ba, J., Nie, J. X., Cao, H., et al., 2008, Mesoscopic fluid flow simulation in double−porosity rocks: Geophysical Research Letters, 35(4), 228?236.
[3] Ba, J., Zhao, J., Carcione, J. M., et al., 2016, Compressional wave dispersion due to rock matrix stiffening by clay squirt flow:Geophysical Research Letters, 43(12), 6186?6195.
[4] Batzle, M. L., Han, D. H., and Hofmann, R., 2006, Fluid mobility and frequency dependent seismic velocity−Direct measurements: Geophysics, 71(10), N1?N9.
[5] Biot, M. A., 1956a, Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low−frequency range: Journal of the Acoustical Society of America, 28(2), 168?178.
[6] mdash;—, M. A., 1956b, Theory of propagation of elastic waves in a fluid saturated porous solid. II. Highfrequency range: Journal of the Acoustical Society of America, 28(2), 179?191.
[7] Brown, R. J., and Korringa, J., 1975, On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid: Geophysics, 40(4), 608?616.
[8] Dvorkin, J., and Nur, A., 1993, Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms: Geophysics, 58(4), 524?533.
[9] Feng, Q., Jiang L., Liu M., et al., 2014, Fluid substitution in carbonate rocks based on the Gassmann equation and Eshelby−Walsh theory: Journal of Applied Geophysics, 106(7), 60?66.
[10] Gassmann, F., 1951, Elastic waves through a packing of spheres: Geophysics, 16, 673?685.
[11] Gor, G. Y. and Gurevich, B., 2018, Gassmann theory applies to nanoporous media: Geophysical Research Letters, 45(1), 146?155.
[12] Gurevich, B., Brajanovski, M., Galvin, R. J., et al., 2009, P−wave dispersion and attenuation in fractured and porous reservoirs−poroelasticity
[13] approach: Geophysical Prospecting, 57(2), 225?237.
[14] Han, D. H., Nur, A., and Morgan, D., 1986, Effects of porosity and clay content on wave velocities in sandstones: Geophysics, 51(11), 2093?2107.
[15] He, X. L., He Z. H., Wang R. L., et al., 2011, Calculations of rock matrix modulus based on a linear regression relation: Applied Geophysics, 8(3), 155.
[16] He, T., Zou, C.C., Pei, F. G., Ren, K.Y., Kong F.D., and Shi G., 2010, Laboratory study of fluid viscosity induced ultrasonic velocity dispersion in reservoir sandstones: Applied Geophysics, 7(2), 114−126.
[17] Jiang, L., Wen, X. T., He, Z. H., et al., 2011, Pore Structure Model Simulation and Porosity Prediction in Reef ‐ Flat Reservoirs: Chinese Journal of Geophysics, 54(3), 403?414.
[18] Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P−and S−waves (full waveform sonic): The Log Analyst, 31(6), 355?369.
[19] Ma, X. Y., Wang, S. X., Zhao, J. G., et al., 2018, Velocity dispersion and fluid substitution in sandstone under partially saturated conditions: Applied Geophysics, 15(2), 188?196.
[20] Mavko, G., and Mukerji, T., 1995, Seismic pore space compressibility and Gassmann’s relation: Geophysics, 60(6), 1743?1749.
[21] Mavko, G., Mukerji, T., and Dvorkin, J., 2003, The rock physics handbook: tools for seismic analysis of porous media, Cambridge University Press.
[22] Nur, A., 1992, Critical porosity and the seismic velocities in rocks: EOS, Transactions American Geophysical Union, 73, 43−66.
[23] O’Connell, R. J., and Budiansky, B., 1974, Seismic velocities in dry and saturated cracked solids: Journal of Geophysical Research, 79(35), 5412?5426.
[24] Passos de Figueiredo, L., Grana, D., Luis Bordignon, F., et al., 2018, Joint Bayesian inversion based on rock−physics prior modeling for the estimation of spatially correlated reservoir properties: Geophysics, 83(5), 1?53.
[25] Pride, S. R., Berryman, J. G., and Harris, J. M., 2004, Seismic attenuation due to wave−induced flow: Journal of Geophysical Research Solid Earth, 109(B1).
[26] Reuss, A., 1929, Berechnung der fliessgrenze von mischkristallen auf grund der plastizitätsbedingungen für einkristalle: Zeitschrift für Angewandte Mathematic und Mechanik, 9, 49?58.
[27] Russell, B. H. and Smith, T., 2007, The relationship between dry rock bulk modulus and porosity−An empirical study: CREWES Research Report, 19, 1?14.
[28] Saul, M. J. and Lumley, D. E., 2013, A new velocity−pressure−compaction model for uncemented sediments: Geophysical Journal International, 193(2), 905?913.
[29] Tang X. M., 2011, A unified theory for elastic wave propagation through porous media containing cracks—An extension of Biot’s poroelastic wave theory: Science China Earth Sciences, 54(9), 1441?1452.
[30] Vernik, L., 2016, Seismic petrophysics in quantitative interpretation, Society of Exploration Geophysicists.
[31] Walsh, J. B., 1965, The effect of cracks on the compressibility of rock: Journal of Geophysical Research, 70(2), 381?389.
[32] Wang, D. X., 2016, Study on the rock physics model of gas reservoirs in tight sandstone: Chinese Journal of Geophysics, 60(1), 64?83.
[33] Winkler, K. W., 1983, Frequency dependent ultrasonic properties of high−porosity sandstones: Journal of Geophysical Research, 88(B11), 9493?9499.
[34] mdash;—, K. W., 1986, Estimates of velocity dispersion between seismic and ultrasonic frequencies: Geophysics, 51(1), 183 - 189
[35] Yin, X. Y., Zong, Z. Y., and Wu, G. C., 2015, Research on seismic fluid identification driven by rock physics: Science China Earth Sciences, 58(2), 159?171.
[36] Zhang, J. J., Li, H. B., and Yao, F. C., 2012, Rock critical porosity inversion and S−wave velocity prediction: Applied Geophysics, 9(1), 57?64.
[1] 王大兴,王浩璠,马劲风,王永刚,张娜,李琳. 苏里格致密气藏射线弹性阻抗流体识别综合研究[J]. 应用地球物理, 2019, 16(2): 231-245.
[2] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[3] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[4] 檀文慧,巴晶,郭梦秋,李辉,张琳,于庭,陈浩. 致密油粉砂岩脆性特征实验分析研究[J]. 应用地球物理, 2018, 15(2): 175-187.
[5] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[6] 段茜,刘向君. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
[7] 李琳,马劲风,王浩璠,谭明友,崔世凌,张云银,曲志鹏. 胜利油田高89区块CO2驱油与地质封存过程中横波速度预测方法研究[J]. 应用地球物理, 2017, 14(3): 372-380.
[8] 刘杰,刘江平,程飞,王京,刘肖肖 . 祁连山冻土区水合物地层岩石物理模型的构建[J]. 应用地球物理, 2017, 14(1): 31-39.
[9] 马劲风,李琳,王浩璠,谭明友,崔世凌,张云银,曲志鹏,贾凌云,张树海. CO2地质封存地球物理监测技术[J]. 应用地球物理, 2016, 13(2): 288-306.
[10] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[11] 曹呈浩,张宏兵,潘益鑫,滕新保. 中观局域流过渡频率及其与衰减峰值频率的联系研究[J]. 应用地球物理, 2016, 13(1): 156-165.
[12] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[13] 崔丽琴, 龙欣, 秦建敏. 用于静冰压力检测的新型膜盒式光纤传感器的研制[J]. 应用地球物理, 2015, 12(2): 255-262.
[14] 林凯, 贺振华, 熊晓军, 贺锡雷, 曹俊兴, 薛雅娟. 基于反演基质矿物模量和多约束条件的双相介质AVO正演方法[J]. 应用地球物理, 2014, 11(4): 395-404.
[15] 孙文杰, 李宁, 武宏亮, 王克文, 张宫. 孔洞型储层测井饱和度解释方程的确定及应用[J]. 应用地球物理, 2014, 11(3): 257-268.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司