APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (3-4): 556-565    DOI: 10.1007/s11770-018-0703-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究
曹晓月1,殷长春1,张博1,黄鑫1,2,刘云鹤1,蔡晶1
1. 吉林大学地球探测科学与技术学院,长春 130026
2. 纽芬兰纪念大学地球科学系,圣约翰斯,加拿大
3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods
Cao Xiao-Yue1, Yin Chang-Chun1, Zhang Bo1, Huang Xin1,2, Liu Yun-He1, and Cai Jing1
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China.
2. Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, A1B, Canada.
 全文: PDF (1249 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 相比于传统的基于结构化网格的三维大地电磁法正反演算法,基于非结构网格的算法可以更高精度地模拟复杂的地下电性结构,克服了传统的基于规则网格算法提高计算精度代价高和难以适应实现直接带地形反演的缺陷。结合基于非结构网格的有限元法,本文采用有限内存拟牛顿(L-BFGS)方法,进行三维大地电磁法反演。该方法不需要显式计算海森矩阵,因此极大地减少内存需求,在第一次迭代后,近似海森矩阵的逆已经逼近了真实值,牛顿步长(设定值为1)即可保证充分下降,每次迭代只需要计算一次目标函数和梯度,提高了计算效率,适合于大规模大地电磁法数据反演。我们分别对带地形和不带地形的理论数据进行反演,结果与实际模型吻合较好,验证了基于非结构有限元法和有限内存拟牛顿法对地形和地下复杂目标体进行反演的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词大地电磁法   三维反演   非结构有限元法   拟牛顿法   L-BFGS     
Abstract: Traditional 3D Magnetotelluric (MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton (L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step (set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.
Key wordsMagnetotelluric (MT)   3D inversion   unstructured finite-element method   quasi-Newton method   L-BFGS   
收稿日期: 2018-04-16;
基金资助:

本研究由面上项目(编号:41774125)和中科院先导专项(编号:XDA14020102)、国家自然科学基金重点项目(编号:41530320)和国家重点研发计划(编号:2016YFC0303100 和2017YFC0601900)联合资助。

引用本文:   
. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 556-565.
 
[1] Avdeev, D., and Avdeeva, A., 2009, 3D magnetotelluric inversion using a limited-memory quasi-Newton optimization: Geophysics, 74(3), 45−57.
[2] Cao, X. Y., Yin, C., Zhang, B., Xin, H., Ren, X., and Qiu, C., et al., 2017, A goal-oriented adaptive finite-element algorithm for 3D anisotropic MT modelling: 79th EAGE Conference and Exhibition, H1−H4.
[3] deGroot-Hedlin, C., and Constable, S., 1990, Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data: Geophysics,55(12), 1613−1624.
[4] Dennis, J. E., and Schnabel, R. B., 1983, Numerical methods for unconstrained optimization and nonlinear equations, Englewood Cliffs, NJ: Prentice-Hall, New Jersey, 86−110.
[5] Egbert, G. D., and Kelbert, A., 2012, Computational recipes for electromagnetic inverse problems:Geophysical Journal International,189(1), 251−267.
[6] Grayver, A. V., 2015, Parallel three-dimensional magnetotelluric inversion using adaptive finite-element method, Part I: theory and synthetic study: Geophysical Journal International,202(1), 584−603.
[7] Gürer, A., and Ìlk???k, O. M., 1997, The importance of topographic corrections on magnetotelluric response data from rugged regions of Anatolia: Geophysical prospecting, 45(1), 111−125.
[8] Jahandari, H., and Farquharson, C. G., 2017, 3-D minimum-structure inversion of magnetotelluric data using the finite-element method and tetrahedral grids:Geophysical Journal International,211(2), 1189−1205.
[9] Liu, Y. H., and Yin, C. C., 2013, 3D inversion for frequency-domain HEM data: Chinese J. Geophys. (in Chinese), 56(12), 4278-428.
[10] Liu, D. C., and Nocedal, J., 1989, On the limited memory BFGS method for large scale optimization: Math. Program, 45, 503-528.
[11] Mackie, R. L., and Madden, T. R., 1993, Three-dimensional magnetotelluric inversion using conjugate gradients: Geophysical Journal International,115(1), 215−229.
[12] Nocedal, J., 1980, Updating quasi-Newton matrices with limited storage:Mathematics of computation,35(151), 773−782.
[13] Newman, G. A., and Alumbaugh, D. L., 2000, Three-dimensional magnetotelluric inversion using non-linear conjugate gradients:Geophysical journal international,140(2), 410−424.
[14] Newman, G. A., and Boggs, P. T., 2004, Solution accelerators for large-scale three-dimensional electromagnetic inverse problems:Inverse Problems,20(6), S151.
[15] Rodi, W. L., and Mackie, R. L., 2000, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion: Geophysics, 66(1), 174−187.
[16] Ren, Z., Kalscheuer, T., Greenhalgh, S., and Maurer, H., 2013, A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling: Geophysical Journal International, 194(2), 700−718.
[17] Smith, J. T., and Booker, J. R, 1991, Rapid inversion of two- and three- dimensional magnetotelluric data: Journal of Geophysical Research: Solid Earth,96(B3), 3905−3922.
[18] Schwalenberg, K., and Edwards, R. N., 2004, The effect of seafloor topography on magnetotelluric fields: an analytical formulation confirmed with numerical results: Geophysical Journal International, 159(2), 607−621.
[19] Siripunvaraporn, W., and Egbert, G., 2009, WSINV3DMT: vertical magnetic field transfer function inversion and parallel implementation: Physics of the Earth and Planetary Interiors, 173(3), 317−329.
[20] Tikhonov, A. N., and Arsenin, V. Y., 1977, Solutions to Ill-posed Problems: John Wiley and Sons, New York, NY, 45−87.
[21] Usui, Y., 2015, 3-D inversion of magnetotelluric data using unstructured tetrahedral elements: applicability to data affected by topography: Geophysical Journal International, 202(2), 828−849.
[22] Yin, C. C., Zhang, B., and Liu, Y. H., 2017, A goal-oriented adaptive algorithm for 3D magnetotelluric forward modeling: Chinese J. Geophys (in Chinese), 60(1), 327−336.
[1] 荆磊,姚长利,杨亚斌,徐梦龙,张光之,纪若野. 三维重力快速反演的优化算法*[J]. 应用地球物理, 2019, 16(4): 514-525.
[2] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[3] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[4] 王堃鹏,谭捍东,王涛. 基于交叉梯度约束的CSAMT和磁法二维联合反演[J]. 应用地球物理, 2017, 14(2): 279-290.
[5] 曹萌,谭捍东,王堃鹏. 人工源极低频电磁法三维LBFGS反演[J]. 应用地球物理, 2016, 13(4): 689-700.
[6] 刘云鹤,殷长春,任秀艳,邱长凯. 时间域航空电磁三维并行反演研究[J]. 应用地球物理, 2016, 13(4): 701-711.
[7] 胡英才, 李桐林, 范翠松, 王大勇, 李建平. 基于矢量有限元法的三维张量CSAMT正演模拟[J]. 应用地球物理, 2015, 12(1): 35-46.
[8] 王祝文, 许石, 刘银萍, 刘菁华. 重力数据3D密度成像中EXTR方法的各参数变化对反演结果的影响[J]. 应用地球物理, 2014, 11(2): 139-148.
[9] 林昌洪, 谭捍东, 舒晴, 佟拓, 张玉玫. 稀疏测线大地电磁资料三维反演研究:合成算例[J]. 应用地球物理, 2012, 9(1): 9-18.
[10] 林昌洪, 谭捍东, 佟拓. 大地电磁全信息资料三维共轭梯度反演研究[J]. 应用地球物理, 2011, 8(1): 1-10.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司